
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

10-1993

Parametricity and Local Variables Parametricity and Local Variables

Peter W. O'Hearn
Syracuse University

R. D. Tennent
Queen's University - Kingston, Ontario

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
O'Hearn, Peter W. and Tennent, R. D., "Parametricity and Local Variables" (1993). Electrical Engineering
and Computer Science - Technical Reports. 158.
https://surface.syr.edu/eecs_techreports/158

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/158?utm_source=surface.syr.edu%2Feecs_techreports%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-93-30

Parametricity and Local Variables

P. \V. O'Hearn and R. D. Tennent

October, 1993

School of Computer and Information Sciencr
Syracuse Cnirersity

Suite 4-116. Cfnler for SciEncr and Technoloqy
SyracuM . .\"etr Yorl.· 1:3244-4100

Parametricity and Local Variables

P. W. O'Hearn*
School of Computer and Information Science

Syracuse University
Syracuse, New York, U.S.A. 13244

ohearn@top.cis.syr.edu

R. D. Tennent t
Department of Computing and Information Science

Queen's University
Kingston, Ontario, Canada K7L 3N6

rdt@qucis.queensu.ca

Abstract

We propose that the phenomenon of local state may be understood in terms of Stra­
chey's concept of parametric (i.e., uniform) polymorphism. The intuitive basis for our
proposal is the following analogy: a non-local procedure is independent of locally-declared
variables in the same way that a parametrically polymorphic function is independent of
types to which it is instantiated.

A connection between parametricity and representational abstraction was first sug­
gested by J. C. Reynolds. Reynolds used logical relations to formalize this connection in
languages with type variables and user-defined types. We use relational parametricity
to construct a model for an Algol-like language in which interactions between local and
non-local entities satisfy certain relational criteria. Reasoning about local variables es­
sentially involves proving properties of polymorphic functions. The new model supports
straightforward validations of all the test equivalences that have been proposed in the
literature for local-variable semantics, and encompasses standard methods of reasoning
about data representations. It is not known whether our techniques yield fully abstract
semantics. A model based on partial equivalence relations on the natural numbers is also
briefly examined.

*This author was supported by NSF grant CCR-92110829.
1This author was supported by an operating grant from the Nat ural Sciences and Engineering Research

Council of Canada and a research fellowship from the Science and Engineering Research Council of Great
Britain.

1

Contents

1 Introduction

2 Types
2.1 Syntax .
2.2 Semantics
2.3 Recursion

3 Properties of Types
3.1 Basic Properties
3.2 Expansions

4 Valuations

5 Exam pies of Reasoning

6 Algebraic Aspects of First-Order Types

7 Relations and Reflexive Graphs

8 Parametric Functors and Natural Transformations

9 When Parametricity Implies Naturality

10 The PER Model
10.1 Store Shapes ..
10.2 Realizable Functors and Natural Transformations .
10.3 Naturality and the Groupoid Interpretation

11 Conclusion

2

3

9

9
9

12

13
13
15

16

20

24

26

30

34

39
40
41
43

46

1 Introduction

One of the first things most programmers learn is how to "declare" a new assignable local
variable, and facilities to support this have been available in programming languages for over
thirty years [29). It might be thought that there would by now be a satisfactory semantic
interpretation for so fundamental and apparently elementary a mechanism. But existing
models are not completely satisfactory [24, 31). The problems arise when block bodies can
contain calls of non-local procedures, and the difficulty is in defining precisely the sense in
which non-local entities are "independent" of a locally-declared variable.

For example, consider the following (Algol 60) block [24]:

begin
integer z;
procedure inc; z := z + 1;
P(inc)

end

Although the unknown non-local procedure P can use its argument to change the value of
z, this value can never be read, and so the block should be equivalent to P(skip), where
skip does nothing, for every possible meaning of P. But this equivalence fails in all previous
denotational models of local variables!

The reader's reaction to this example might be that it is contrived, and that it has no
practical significance; after all, who would ever write such a program? But consider the
following slightly more complicated example:

begin
integer z;
procedure inc; z := z + 1;
integer procedure val; val:= z;
z := 0;
P(inc, val)

end

The local variable, the two procedure declarations, and the initialization can be considered
as constituting the concrete representation of an abstract "counter" object. Procedure P,
the "client," is passed only the capabilities for incrementing and evaluating the counter, and
cannot access the counter representation in any other way. A more modern language would
provide a "sugared" syntax, and one could write something like

module counter(exports inc, val);
begin

integer z;
invariant z ~ 0;
procedure inc; z := z + 1;
integer procedure val; val := z;
z := 0

end counter;

... counter. inc; ... counter. val ...

3

but the unsugared form shows that, even without additional features, the combination of
local variables and procedures in Algol-like languages supports a form of representational
abstraction, which is one of the main themes of modern programming methodology. (In fact,
the same example is used in the Appendix of [45] to make the same point.) See [47, 58]
for discussion of Algol-like languages, and [44, 4] for comparisons of linguistic approaches to
representational abstraction.

To a certain extent, the relevance of representational abstraction to the semantics of local
variables has already been exploited. The models described in [24, 30] support validation
of invariance principles often used for reasoning about data representations, as in [10]. For
example, these models validate the following equivalence:

begin
integer z;
procedure inc; z := z + 1;
integer procedure val; val:= z;
z :=0;
P(inc, val);
if z ~ 0 then diverge

end

diverge

where diverge is a statement whose execution (in any state) never terminates. Because P
can be any procedure (of the appropriate type), the equivalence demonstrates that z ~ 0 is
an invariant of the counter representation; i.e., z ~ 0 is true before and after every call of inc
from P.

But there is more to representational abstraction than preservation of this kind of repre­
sentation invariant. Consider the following block, which uses a "non-standard" representation
of a counter:

begin
integer z;
procedure inc; z := z - 1;
integer procedure val; val:= -z;
z := 0;
P(inc, val)

end

This block should be equivalent to the block that uses the "standard" representation. The
equivalence illustrates the principle of representation independence: one concrete representa­
tion of a data abstraction should be replaceable by another, provided the relevant abstract
properties are preserved; see, for example, [25]. It is clearly important to be able to validate
changes of representation; but existing semantic models of local variables almost always fail
on such equivalences!

This failure is especially surprising because standard informal methods for demonstrating
correctness of data representations [10][46, Chapter 5] can easily be adapted to proving such
equivalences. For our example, consider the relation R between states for the two implementa­
tions such that, if z0 and z1 are the values of the variable z in the standard and non-standard
implementations, respectively, R holds if and only if -z1 = z0 ~ 0 and all other variables have
the same values. It can be shown that

4

• R is initially established by executing the two initializations (with identical non-local
states);

• executions of (the two implementations of) inc preserveR; and

• evaluations of (the two implementations of) val in R-related states yield the same result.

The conclusion is that R holds after execution of the calls toP, and so the blocks have been
"proved" to have equivalent effects on non-local variables. But, although there is no reason to
think these methods are invalid, they have never been rigorously verified for a language with
local-variable declarations!

This discussion of data abstraction motivates our link with the concept of parametricity,
introduced by Strachey [55] in the following remarks:

There seem to be two main classes [of polymorphism], which can be called
ad hoc polymorphism and parametric polymorphism.

In ad hoc polymorphism there is no single systematic way of determining the
type of the result from the type of the arguments. There may be several rules
of limited extent which reduce the number of cases, but these are themselves
ad hoc both in scope and content. All the ordinary arithmetic operators and
functions come into this category. It seems, moreover, that the automatic insertion
of transfer functions by the compiling system is limited to this class.

Parametric polymorphism is more regular and may be illustrated by an exam­
ple. Suppose f is a function whose argument is of type a and whose result is of
type {3 (so that the type off might be written a=> {3), and that Lis a list whose
elements are all of type a (so that the type of L is a list). We can imagine a
function, say Map, which applies fin turn to each member of Land makes a list
of the results. Thus Map[f, L] will produce a {Jlist. We would like Map to work
on all types of list provided f was a suitable function, so that Map would have to
be polymorphic. However its polymorphism is of a particularly simple parametric
type which could be written

(a ::::> {3, a list) ::::> {Jlist

where a and {3 stand for any types.

Although a complete understanding of the ramifications of this notion of parametricity is
not yet available (cf., [7, 41]), Reynolds [43, 48] has emphasized the close relationship with
representational abstraction. The idea is that a parametric polymorphic function must work in
a way that is independent of the types to which it is instantiated. For instance, (in the absence
of recursion) the only parametric elements of type Va.a ---+a---+ a are the two functions with
two arguments that return either the first argument or the second argument, respectively.
On the other hand, a function that would return its first argument when instantiated to a
function on integers, and its second otherwise, is not parametric because it works differently
at different types. Intuitively, a parametric function cannot make use of knowledge about the
types to which it is instantiated, which is to say that type variables are treated "abstractly."

We propose that the independence of non-local entities and local variables is in essence
similar to the sense in which a parametric function is independent of the specific types to which

5

it is instantiated. Stated in terms of abstraction, the principle that a non-local procedure
cannot access a local variable (except through using arguments that access the variable) is
analogous to the principle that the representation of an abstract type cannot be directly
accessed by programs that use it (except through the provided operations of the type). We
will define a semantics for an Algol-like language in which non-local procedures are modeled as
parametric functions that can be instantiated with pieces of local state. The independence of
the procedure itself from a local variable will then be explained in terms of the independence
of a polymorphic function from type arguments, which here play the role of local state.

The approach to representational abstraction that we will follow is based on the work of
Reynolds [48], where the technique of "logical" relations [40, 26] was used to give a rigorous
formulation of abstraction that is appropriate for functional languages with higher-order and
polymorphic procedures and programmer-defined types. We can illustrate the representation­
independence property provable using logical relations as follows. Suppose

• 8 is a type expression with (say) one free type variable, and 1r is a typing context, i.e.,
a finite list of types over the same type variable;

• W0 and W1 are sets, regarded as alternative "representations" of the type variable;

• [8]W0 is the set of meanings of type 8 when W0 is assigned as the meaning of the type
variable, and similarly for [8]W1;

• [1r]W0 is the set of 1r-compatible environments when W0 is assigned as the meaning of
the type variable, and similarly for [1r]W1;

• R <;;;; Wo X wl· is any relation on Wo and wl' regarded as relating representations of
abstract values;

• [8]R <;;;; [8]W0 x [8]W1 is the relation on 8-meanings "logically" induced by R, and
similarly for [1r]R <;;;; [1r]W0 x [1r]W1;

• P is any phrase of type 8 in context 1r;

• [P]W0 is a function which is the meaning of P when W0 is assigned as the meaning of
the type variable, and similarly for [P]W1.

Then it can be proved that ([P]W0 , [P]W1) is a relation-preserving pair offunctions; i.e., for
all u0 E [1r]Wo and u1 E [1r]W1,

Intuitively, this says that relations between different representations of a type variable are
respected by programs that use it. We will refer to this kind of uniformity as relational
parametricity, after [55] and [48], and portray it diagrammatically as follows:

[1r] Wo ----"'-[P--"]'--W,-0 -+- [8] Wo

[1r]Rj j[8]R

[1r]W1 [P]W1 [8]W1

6

Notice that double-headed arrows - are used here for (binary) relations, and that this is
not a conventional commutative diagram.

The connection between logical relations and polymorphic functions emphasized by
Reynolds is that if the above relation-preservation property is to hold in a polymorphic lan­
guage, then values of'v'-types must be constrained so as to satisfy similar relation-preservation
conditions. In our model for local variables, function types will themselves have a polymorphic
flavour, and will be constrained by such a parametricity condition.

Relational parametricity is commonly thought to prescribe necessary properties that para­
metric functions must satisfy. What is less clear is whether, particularly in the binary-relation
form, it is sufficient to characterize the intuitive concept. Another appealing approach to
parametricity, possessing a fairly coherent conceptual basis, uses partial equivalence relations
(PERs); e.g., [20]. In the PER approach, polymorphic types are interpreted as infinitary
intersections, so that a (realizer for a) polymorphic function is an untyped meaning that is
type-correct for all instantiations of a type variable. This captures, to a certain (not com­
pletely understood) degree, the intuition that a polymorphic function is given by a uniform
algorithm. On the other hand, the relational approach captures, to a certain (not completely
understood) degree, intuitions about representation independence.

The larger part of our effort in this paper will be directed toward examining the relational
approach of Reynolds. The semantic model we define will represent quite directly the informal
reasoning about local variables and data abstraction alluded to above. However, we will also
briefly outline how PERs can be used to treat variable declarations. A comparison of the two
models will be given in Section 11.

Our method of incorporating parametricity builds on the functor-category approach to
local variables pioneered by Reynolds [47) and Oles [33, 34). In the remainder of this Intro­
duction, we will briefly review the basic elements of this approach, and indicate how relational
parametricity will enter the picture. (The expository article [31] and textbook [58) contain
introductions to this approach.)

The key insight of the Reynolds-Oles work is that, in a language with local-variable decla­
rations, the concept of state is not constant-represented by a single set of states-but rather
varies as storage variables are allocated and de-allocated. That is, there are different possible
sets of states depending on the "shape" of the run-time stack; i.e., the number and type of
variables that have been allocated.

To account for this, the semantics is parametrized by abstract "store shapes," effectively
building the variance in the concept of state into the semantics in a way that logically precedes
any assignment of meanings to phrases. In general, the meaning of a type is not a single do­
main, but a whole family of domains. For example, the type of commands is often interpreted
as S -+ S _1_, where S is a set of states. But in a language with variable declarations S itself
varies, and so there is a domain X --+ X _1_ for each possible set X of states. In particular, a
local-variable declaration changes the set of states from X to X x Y, where Y is the set of
values the new variable may hold; the Y -valued component of each element of X x Y repre­
sents the new variable. Similarly, if the the domain of command meanings prior to a variable
declaration is X--+ xl_, then, after declaration, it becomes X X y--+ (X X Y)J..·

The semantic set-up can be elegantly described using basic concepts of category theory.
The variance in the concept of state is modeled using a category of "possible worlds." Each
possible world determines the set of storage states needed to represent the values of currently

7

available variables, and a morphism of worlds "expands" the current state by allocating space
for additional storage variables (theY -valued component above). This variance in the concept
of state induces a similar variance into types, which is represented by interpreting types
as functors from the category of possible worlds to a category of domains and continuous
functions. Phrases are interpreted as natural transformations of these functors. The naturality
condition on the meaning of any phrase P is portrayed by the following commutative diagram:

[7l']Wo --=-[P--=]'---W,-0 - [0] Wo

[7r]fl l[O]f

[1r]W1 [P]W1 [O]W1

where f: W0 -+ W1 is a morphism of possible worlds, and [0] and [1r] are type and environment
functors.

Notice that, in many respects, this is similar to the relational-parametricity picture dis­
cussed earlier. Parametrization by possible worlds is roughly analogous to abstraction on a
type variable. In fact, if we think of the possible worlds as certain kinds of types, then [P]
is a family of functions indexed by these types and so is, in a certain sense, polymorphic. It
is therefore certainly conceivable to require a family of this form to satisfy a parametricity
constraint.

This analogy between possible worlds and type variables suggests how relational para­
metricity can be incorporated. We consider binary relations between worlds, regarded as relat­
ing different "representations" of the store shape, and the semantics of types is then arranged
so that each such relation induces a relation between the meanings of a type at different store
shapes. The meanings of terms are then families of maps satisfying a relational-parametricity
constraint.

The naturality requirements of Reynolds and Oles will not be abandoned. However, to
make the presentation more accessible, we will begin with a "category-free" description of our
model. The naturality conditions are implicit in this presentation, but will later be shown to
be implied by relational parametricity.

This category-free description has the advantage of being quite simple, and it also puts
the role of parametricity clearly on display. But a consideration of relevant category-theoretic
issues is crucial for a deeper understanding of the model. The category-free presentation ap­
pears very ad hoc in some respects; a fully satisfactory justification for some of the definitions
will come from categorical considerations. Further, while we will show that in certain cir­
cumstances naturality is implied by relational parametricity, it must be emphasized that, in
general, these are different kinds of uniformity, with neither being stronger than the other. It
will be seen, in fact, that the connection between these two concepts is somewhat delicate. (In
Section 9, we show an example where "parametricity implies naturality" is not stable under
Currying isomorphisms; this, for us, came as a surprise.)

To study this combination of relational parametricity and naturality, we will define a suit­
able cartesian closed category of "relation-preserving" functors and natural transformations.
The key technical notion underlying this construction is that of a reflexive graph, which is
essentially an arbitrary category equipped with assignments of (abstract) "relations" to its
objects and morphisms. This will be taken up in Sections 7-9. The earlier parts of the paper

8

are devoted to the category-free presentation of the model.

2 Types

2.1 Syntax

Our language is an Algol-like language in the sense of [47]. The language does not include
jumps or subtypes, but it raises the key issues related to variable allocation. The types are as
follows:

8 ::= int I bool · · ·

j3 ::= comm I exp[8] I var[8]

o ::= f3 I o- f3

(data types)

(primitive phrase types)

(phrase types)

Data types are the types of values that can be stored, while phrase types consist of meanings
that can be denoted by identifiers and, more generally, program phrases, but that cannot be
stored. This distinction allows variable declarations to obey a stack discipline.

comm is the type of commands. Executing a command causes a state change, but does
not return a value. var[8] is the type of storage variables that accept 8-typed values. exp[8]
is the type of expressions that return values of type 8. Expressions are "read only," in that
they are state dependent but do not cause side effects. So all state changes are concentrated
in the type comm. In particular, procedures, which are called by-name, can only change the
state indirectly, when used within a phrase of type comm.

In procedure types 0 is a non-empty vector of phrase types. This "uncurried" formulation
of the syntax of procedure types is not essential, but is most amenable to a category-free
description of the model.

2.2 Semantics

We will regard a binary relation R as a triple (W0 , W1 , S) where W0 and W1 are sets (the
domains of R) and S ~ W0 x W1 (the graph of R). Although we will work exclusively with
binary relations, our definitions (though not all of our notation) generalize straightforwardly

Wo

to n-ary relations for any n. We will use the notations R: W0 +-+ W1 and R! to mean that

W1
R is a binary relation with domains W0 and W1 , and w0 [R]w 1 to mean (w0 ,w1 } e graphR.

If W is any set,

• ~w:W +-+ W is the diagonal relation on W; i.e., w[~w]w' {:::::::::::} w = w'.

We use w- X and w X X for the function space and product of sets. If Wo, wl, Xo, and
X 1 are sets and R:W0 +-+ W1 and S:X0 +-+ X 1 ,

• R X S: Wo X Xo +------+ wl X xl is defined by (wo, Xo}[R X S](wl, xt) {:::::::::::} wa[R]wl and
xo[S]xl;

9

• R- S: Wo - Xo - wl - xl is defined by fo[R- S]fl -¢:::=:> for all Wo E Wo,
w1 E W1 , if w0 [R]w1 then / 0 (w0)[S]/1(wi). We often use the diagrammatic notation

fo
Wo-WI

Rl ls
XohXl

to indicate that f 0 [R - S]/1 • Notice that this notation makes the domains of the
relations, and the domains and codomains of the functions, evident.

The collection :E of "store shapes" is a set of sets that includes desired data types, such as
2 = { true,Jalse} and Z = { ... , -2, -1, 0, 1, 2, ... }, and all finite (set) products of these. We
won't be more specific about :E, except to emphasize that it must be a small collection. For
each data type 15, we assume a set [/5] in :E, with [int] = Z and [bool] = 2.

Following [48], we define a "twin" semantics of phrase types, where each 0 determines two
functions

[0] : :E --+ Sets

[0]: rel(:E)--+ rel(Sets).

Here, Sets stands for the class of sets, rel(Sets) for the class of binary relations between sets,
and rel(:E) for the set of binary relations between store shapes. The relational component of
the semantics will be used to enforce parametricity constraints.

The interpretation of the command type is as follows:

• for every store shape Win :E,

[comm]W w-w;and

• for every R: W0 +-+ W 1 in rel(:E),

[comm]R R-R.

For expressions:

• for every store shape Win :E,

[exp[/5]]W W- [/5] ;and

• for every relation R: W0 +-+ W1 in rel(E),

[exp[I5]]R R- ~[6]·

For variables:

• for every store shape W in :E,

[var[/5]]W = ([15] --+ [comm]W) x [exp[o]]W ; and

10

• for every relation R: W0 - W1 in rel(~),

[var[8]]R = (~[6] - [comm]R) x [exp[8]]R.

The two components of a variable allow for, respectively, updating and accessing its contents.
This "object-oriented" approach to variables is from [47].

For vectors if= 81, ... , Bn:

• for every store shape W in ~' [B]W = [81]W x · · · x [B]W ; and

• for every R: Wo - wl in rel(~), [if]R = [Bl]R X ••• X [B]R

Officially, meanings for types [8] and vectors [if] are defined by a simultaneous induction.
For procedure types one might expect to use a pointwise definition, where [if- ,B]W =

[if]W - [,B]W, and similarly for the relation part. However, a pointwise definition is not
appropriate in the present context. The reason is that we think of the sets in ~ as "store
shapes," which can grow between the point of definition of a procedure and the point of call.
For example, if the store shape is W when a procedure identifier Pis bound, and Pis called
after an integer variable is declared, then the shape of the stack for the call will be W x Z,
not W.

binding of P · · · begin integer x; · · · P(· · · x · · ·) · · · end

Thus, a procedure meaning at store shape W must be applicable at an expanded shape W x X,
where X corresponds to additional variables that have been allocated. This is accounted for
in [47, 33] by defining a procedure meaning to be a family of functions, indexed by extra
components X representing pieces of local state that can be added to the stack. We will follow
the same route here, except that these families of functions will be subject to parametricity
conditions.

A procedure type if- ,B is interpreted as follows.

• For every store shape W in ~'

[B---+ ,B]W = vx. [if](W X X) - [,B](W X X) ;

that is, p e [if- ,B]W is a family of functions

p[-]: [if](W X-) - [,B](W X-)

indexed by store shapes X, satisfying the following parametricity constraint: for all
relations R: X 0 - X 1 between store shapes,

[if](W X Xo) ~p-=--[X_o=-] -[,B](W X X0)

[if](~w x R) 1 1 [,B](~w x R)

[if](W X Xl) [,B](W X Xl)
p[X1]

Function p[X] models the behaviour of the procedure instantiated at the "expanded"
store shape W x X.

11

• For every relation R: X 0 ~ X 1 in rel('E), p[[O----+- ,B]R] q iff, for all relations S: Y0 ~ Y1

in rel('E),

[B](Xo X Yo) _P_o-=--[Yr----'0]=----- [,B](Xo x Yo)

[O](R X S)t 1 [.B](R X S)

[B](Xl X YI) [.B](Xl X YI)
PI[YI]

Notice how the relational and domain-theoretic semantics become intertwined at this point.
This is motivated by the use of a relational condition to constrain values of V types in [48].
The identity relation Llw plays the same role as the identity relations there. (Of course, the
foundational difficulties described in [48, 49] do not arise here, because the source collection
'E, over which indexing is done, is small.)

2.3 Recursion

The presentation thus far is for a recursion-free dialect of Algol. Recursion can be dealt
with by using domains in place of sets, as follows. (We still use sets, or discretely-ordered
predomains, for the store shapes.)

If D and E are partially ordered sets and R: D ~ E (i.e., R is a relation on the underlying
sets),

• R1.: D 1. ~ E1. is defined by d[R1.]e {::::::::} d = e = .l or d[R]e, where D 1. is obtained
from D by adding a new least element .l.

If D and E are directed-complete partially-ordered sets then a relation R: D ~ E is

• complete, if its graph is a directed-complete subset of the pointwise-ordered product of
the domains of the relation; and

• pointed, if D and E are pointed and R relates their least elements.

The semantics can then be defined by mapping store shapes to domains, and relations on
store shapes to pointed complete relations on domains. For the command type:

• for every store shape W in 'E,

[comm]W W ----+- W 1. and

• for every R: W0 ~ W1 in rel('E),

[comm]R = R --? R1..

Here, the----+- acts on (pre)domains as the continuous-function space constructor, and on com­
plete relations by producing the evident complete relation on the function spaces. The defi­
nitions of the other base types can be modified in a similar fashion, and procedure types are
exactly as before, but with the----+- in the definition understood as constructing the continuous­
function space, and the families p[-] ordered component-wise.

The restriction to complete relations is standard. It is needed for the fixed-point operator
to satisfy the appropriate parametricity constraints, and also for domain-theoretic structure
to be respected when using parametricity to constrain procedure types. As the consideration
of recursion would add little to our discussion of locality, we will for simplicity concentrate on
the set-theoretic semantics in the remainder of the paper.

12

3 Properties of Types

3.1 Basic Properties

We now turn to some basic properties satisfied by this semantics. These are all essentially
consequences of the polymorphic view of phrase types sketched in the previous section.

First, as in [48], each [8] preserves identity relations.

Lemma 1 (Identity Extension)

For each phrase type 8 and store shape W, [8]~w = ~[e]w.

Proof: By induction on types. For base types this is immediate.
We will consider the function type in some detail to indicate how the proofs go. For 0.....,. (3,

if p E [0 (3]W then, by definition, p [[0 f3]~w]P iff, for all R: X a - x1'

[O](W x Xa) ---=..p..:....[X_o=-] -[f3](W x Xa)

[O](~w x R)! 1 [f3](~w x R)

[O](W X Xi) [f3](W X X1)
p[Xl]

As this is none other than the parametricity constraint on procedure meanings, we may con­
clude that [0.....,. f3]~w contains the diagonal.

Conversely, if p[[O.....,. f3]~w]q then, for R:X0,. X 1 ,

[O](W x Xa) ---=..P__,_[X.....:.a=-] -[f3](W X Xa)

[O](~w x R)! 1 [(3](~w x R)

[O](W X X1) [f3](W X Xi)
q[Xt]

In particular, taking R as a diagonal ~x and applying the induction hypothesis (both for 0
and for (3) gives that p[X]a = q[X]a for all X and a E [B)X, and sop= q. (We are using the
fact that the identity property can be seen to hold for [8] whenever it holds for each element
of the vector.) •

A further related property, emphasized in [7), is that each [8] is functorial on isomorphisms.
We say that a relation in rel(~) (respectively, rel(Sets)) is an isomorphism iff it is the graph
of a bijection. (In a domain-theoretic model, we would consider continuous isomorphisms, i.e.
continuous, order-reflecting bijections) .

It will be well, for future reference, to have an explicit description of functional isomor­
phisms induced by bijections between store shapes (even though these isomorphisms could
alternatively be read off from the semantics of types, using a relational isomorphism). If
f: W - X is a bijection between store shapes then the isomorphism / 8 : [B]W - [B]X is
defined as follows.

fcomm

fexp[b]

fvar[b]

fo f3

J-1- f
J-1 id[b]

(id[b] - /cornrn) X fexp[b]
..\pAY. u- 1 X Y)o; p[Y] ; (!X Y)f3

13

Here we are using the action of exponentiation -+ and product x (in the category of sets) on
morphisms, and id is an identity. In the last equation, the right-hand side denotes the function
that takes p E [0-+ ,B]W and a store shape Y to the bottom of the following diagram

[O](X X Y) ~ [,B](X X Y)

u-l X Y)er l (f X Y){3

[O](X X Y)- [,B](X X Y)

where f0 for vectors is defined in the obvious component-wise way.

Lemma 2 (Isomorphism Functoriality)

Each [B] is functorial on isomorphisms. That is, for all isomorphisms R: W ~ X in rel(E),

1. if R is an isomorphism then so is the induced relation [B]R, and

2. if R:X ~ Y and S:Y ~ W are isomorphisms, then [B]R; [B]S = [B](R; S) where
semicolon is relational composition.

(Preservation of identities is the identity extension lemma.) Furthermore, iff: W -+ X is a
bijection between store shapes and R 1 : W ~ X is the relation with the same graph as f then
the relation [B]R1 and the function f 9 have the same graph.

Proof: First, showing that f 9 is iso follows by a straightforward argument, where the function
type case is much as in the proof of the identity extension lemma. Second, that [B]R1 and the
function fe have the same graph can be shown by induction on types, where the function-type
case follows immediately from the induction hypothesis. It is then not difficult to show that
(·) 9 preserves identities and composites, when applied to bijections. •

Of course, relational composition is not preserved for all relations.
In the following, much use will be made of the canonical unity and associativity isomor­

phisms between store shapes. (Here, 1 is a singleton store shape.)

unl: W x 1-+ W unr:W-+ W x 1

assl:W x (X x Y)---+ (W x X) x Y

assr: (W x X) x Y---+ W x (X x Y).

These isomorphisms satisfy a special parametricity property.

Lemma 3 (Canonical-Isomorphism Parametricity)

If R;: X; ~ Y; are relations between store shapes, fori= 1, 2, 3, then, for all types(},

unl[[B](R1 x ~1)-+ [B]R1]unl unr[[B]Rl-+ [B](R1 x ~I)]unr

ass! [[B](R1 x (R2 x R3)) -+ [B]((R1 x R2) x R3)] ass!

assr [[B]((R1 x R2) x R3) -+ [B](R1 x (R2 x R3))] assr

Proof: A routine induction on B. •
Notice that the notation for these canonical isomorphisms does not make the domains and
codomains explicit. Perhaps we could write, e.g., asslx,x,x3 8 ; however, no ambiguity will
arise as the relevant information will always be clear from context.

14

3.2 Expansions

There is further structure in the semantics that derives from the conception of elements of
E as representing "shapes" of the run-time stack. Specifically, the expansion of store shapes
caused by variable declarations is accompanied by mappings that convert semantic entities at
a shape W to any expanded shape W x X.

If W and X are store shapes, for each type (} we define a function

expand9 (W,X):[O]W--" [O](W x X)

This goes by induction on types.

expandcomm(W,X)c(w,x) (cw ,x)

expandexp[6] (W, X) e (w, x) e w

expandvar[c] (W, X) (id[6] --+ expandcomm (W, X)) X (expandexp[6] (W, X))

expand9~-13 (W, X) p Y = assr 8 ; p[X x Y] ; assl,e

This treatment of expand maps would surely benefit from a dose of category theory. For now
we will push on and complete the concrete description of the model, leaving the tidying up of
categorical matters to Sections 7-9.

There is a special uniformity property that the expansion functions satisfy. It states that
expansions preserve relations on non-local states, and also produce meanings at expanded
shapes that satisfy all relations on the local part of a store shape.

Lemma 4 (Expansion Parametricity)

If R: W 0 - W1 and S: X 0 - X 1, then

expand9 (W0 , X a)
[O]Wo [8](W0 x X 0)

[O]Rl 1 [O](R X S)

[O]Wl --d---,-(W_X_) [O](Wl X Xl)
expan e 1• 1

Proof: By induction on (}, Base types are immediate. We will indicate the proof for the
function type.

Suppose p0 [[0--+ /3]R]p1 . For any S:Y0 - Y1 , the definition of [0--+ /3]R implies

By the Canonical-Isomorphism Parametricity Lemma we get

(assr ;po[Xo x Yo]; ass!) [[O]((R x S) x Q)--+ [/3]((R x S) x Q)] (assr ;p1 [X1 x Y1]; ass!)

and, by the definition of expand, this is just what we wanted to show. •
15

[x: 0]

M:if---+{3

>.x: 0. M : 0, if---+ {3

V: var[8]
derefV: exp[8]

A : exp[8] ---+ comm E : exp[8]
(A, E) : var[8]

cl : comm c2 : comm
C1 ;C2: comm

skip: comm

M : 0, if---+ {3 N : 0

(M N): if---+ {3

V: var[8] E: exp[8]
V:=E:comm

B : exp[bool] M : 0 N : 0'
ifBthenMelseN: 0

C: comm E: exp[8]
do6 C result E: exp[8]

new6 : (var[8]---+ comm)---+ comm

Table 1: Typing Rules

4 Valuations

Whereas the category-free semantics of types is quite simple, the semantic equations for terms
will turn out to be comparatively complex. This is a presentation trade-off: the valuations
in the categorical semantics given later are much simpler, but require a more sophisticated
interpretation of types.

A type assignment 11" is a finite function from (an unspecified set of) identifiers to phrase
types. Some typing rules are in Table 4. The rules are in a natural deduction format. The rules
for abstraction and application are for the uncurried syntax of types. The pairing construct
uses the "object-oriented" approach to variables. We write write 11" 1- M : 0 to indicate that
M: 0 is derivable from (undischarged) assumptions 11".

The example blocks in the Introduction can easily be desugared into this language. A
block begin 8 x; C end is rendered as new6 (>.x: var[8]. C). We will arrange matters so new
always assigns an initial value to the variable created. Of course, we could alternatively let
the programmer supply this value, in which case the type of new6 would be

(exp(8], (var(8]---+ comm))---+ comm.

If 1r is a type assignment then the 11"-compatible environments, and relations between them,
are as follows.

• for each store shape W, [1r]W = flxEdom(,.)[1r(x)]W; and

16

[.Ax: B. M] W u d, l [M]W (u I x f-+ d) l

[derefV]Wu = snd([V]W u)

[V := E]Wuw = fst([V]W u) ([E]W uw)

[skip]W us s

[(P, E)]W us = ((.Xv .\w. [P]Wu(.As. v)w, [E]Wu)

[C1;C2]Wus = [C2]W u ([C1]W us)

[do6 C result E]W us = [E]W u ([C]W us)

[ift B then M else N]W us { [M]Wus, if [B]W us = true
[N]W us, if [B]W us = false

Table 2: Valuations

• for each relation R: W0 - W1 between store shapes,

The meaning function associated with a judgement 1r f- P: if- f3 will be a family of functions
[P],.ca-~) W: [1r]W- [B]W- [f3]W indexed by store shapes W. In the case of base types

{3, we will simply omit the if argument and have [P],.13 W: [1r]W- [f3]W. (The functionality
of these valuations derives from categorical considerations on the model.)

We begin with identifiers. If 1r 1-- x : f3 then the valuation is, as usual: [x]W u = u(x). In
the case of function types 1r 1-- x: if- {3, given l E [O]W we must produce [x]WulE [f3]W.
We can apply the meaning of x at the store shape 1 to obtain a function

u(x)[1]: [B](W x 1)- [f3](W x 1),

and then we can apply unity isomorphisms to get a function [B](W)--+ [f3](W). So we define
[x]Wu = unl; u(x)[1]; unr.

Readers familiar with functor categories will notice that this valuation for identifiers is
similar to what one obtains by uncurrying a projection A x (B => C) --+ (B => C), where
B => C is the functor exponent. In general, all of the valuations in the category-free semantics
are obtained by uncurrying maps in the more standard category-theoretic presentation.

Most of the valuations for the language are in Table 4. In each equation u is an environment
in [1r]W for the appropriate 1r and a store shape W and l E [if] is an appropriately typed
vector of arguments. It is understood that this vector is omitted when the term in question is

17

of base type. In the equation for if, t is either comm or of the form exp[8]. The conditional
extends to other types in the usual inductive fashion. The rules for abstraction and application
are for the uncurried form of types.

We will not give denotations, or syntax rules, for ordinary arithmetic and logical opera­
tions. These can be defined by lifting a function f: [81] x · · · x [on] -+ [8] to an interpretation
for a combinator of type exp[ot] x · · · x exp[on] -+ exp[o] in the evident fashion.

The block expression do · · · result · · · warrants some explanation; doC result E returns
the value of expression E in the state that results after executing C. For example, in

x := 2; y := (dox := lresultderefx)

the final value of y is 1 whereas the final value of x is 2. Reynolds calls this "snapback
semantics," because the state change caused by x := 1 is temporary: the state snaps back to
its initial value on termination of the expression evaluation. There is a problem with snapback
semantics: it violates what is often called the "single-threaded" nature of state in imperative
languages [51]. Intuitively, if a state change occurs, the old state is no longer available, so
there is no way to backtrack to an earlier state. We will discuss this issue further in the
Conclusion.

We now turn our attention to the key cases of new and application.
For store shape W, p E [var[o]-+ comm]W and state wE W,

[new6]Wupw = fst(p[[o]] (a,e)(w,6))

where 6 E [8] is a standard initial value of new variables of type 8, and (a, e) E [var](W x [8])
is the new variable, defined as follows: e(w, x) = x and a(y)(w, x) = {w, y). The "acceptor"
a overwrites the [8]-valued component of the state. The intuition behind this definition is
that procedure p is executed in an expanded store shape, where the additional [8]-valued
component holds the value of the new variable. The argument (a, e) provides the capability
for updating and accessing this variable. The final value of the variable is discarded using the
projection fst. This is as in [47, 33].

The semantics of new is where the parametricity constraints in the model come into play.
Because of the definition of procedure types, a call top at an expanded store shape W x [8] is
required to satisfy uniformity conditions induced by relations involving [8]. In the next section
we will consider a number of examples showing these parametricity conditions at work.

Next, we consider application. Suppose that we are given 1r 1- M : fJ, jj-+ /3 and 1r 1- N : fJ.
If(}= /3' is a primitive type then the semantics is simple, obtained by prepending the meaning
of N onto a suitable vector.

[M N]Wul = [M]Wu([N]Wu,l)

It is clear that when jj is empty this is the obvious application.
The case when (} is not a primitive type is more complex. If (} = (Ji ---+ (3' then we need

to prepend an element of [tJi -+ (3']W onto a vector. Recall that a meaning of this type is a
family of functions indexed by store shapes: we need to obtain such a family from the meaning
of N.

For a fixed environment u E [1r]W, define gas follows; for all X,

g[X] = [N]{W x X)(expand"(W,X) u)

where expansion maps are extended to type assignments pointwise:

18

expand,.(W,X)(u)(x E dom7l") = expand,.(x)u(x).

Notice that g[X]: [ifl](W x X) -+ [/3'](W x X), so g is certainly of the right form to be in
[0-; -+ {3']W. It will be shown to satisfy the necessary parametricity constraints in the course
of proving the Abstraction Theorem below. The semantics of application is

[M N]Wul = [M]Wug,l

The reader familiar with semantics in functor categories will notice that expansions come
into this uncurried style of presentation in the case of application, whereas they appear when
treating A-abstraction when the semantics is presented in a more conventional curried form.

Theorem 5 (Abstraction)

Suppose 7l" f- p : 0-+ /3 and R: Wa - wl is a relation between store shapes; if Uo [[11"]R] ul
and d~ [[O]R] d~ then

[P]Wo ua d~ [[/3]R] [P]W1 u1 d~

(This statement applies to terms of primitive type by omitting various vectors.)

Proof: The Abstraction Theorem and the well-definedness of [P] are proven simultaneously
by structural induction on P. Well-definedness is immediate in all cases except application
(which is the only case where the simultaneity is used in a non-trivial way).

For the well-definedness of application, suppose 7l" f- M : 0, 0-+ /3 and 7l" f- N : 0. If 0 = /3'
is a primitive type then the result is immediate, so suppose 0 = if -+ /3'. Well-definedness
will be assured if we can show that the family of functions

g[-]: [O'](W X-) -+ [/3'](W X-)

satisfies the parametricity condition for [0-; -+ /3']W. For S: X 0 +-+ X1 and u E [11"]W define
ui = expand,.(W, Xi) u. By the Identity Extension Lemma and the Expansion Parametricity
Lemma, u0 [[11"](~w xS)] u1. (The evident version of the expansion lemma for type assignments
is a corollary of the one for types.) By the Abstraction Theorem for N (induction hypothesis),

and so
g[XaJ[[ifl](~w x S) -+ [/3'](~w x S)]g[X1] .

This shows that g e [0-; -+ /3']W, as desired.
For the Abstraction Theorem, we will consider application and new; all other cases are

routine.
For application we have 7l" f- M : O,if-+ /3 and 7l" f- N : 0. Suppose u0 [[7l"]R]u1 and

d~ [[O]R]l1. If 0 = /3' is primitive then the Abstraction Theorem for N (induction hypothesis)
guarantees that [N]W0 u0 [[/3']R] [N]W1 u1 and then the Abstraction Theorem forM implies
that

[M]Wo Uo ([N]Waua), d~ [[/3]R] [M]W1 U1 ([N]W1 u1), d~.

19

In the case that 8 = if - {3' we reason in the same manner, but use g0 [[if - f3']R]g11

where 9i is the meaning determined by the environment ui, as in the definition of application.
This last property follows from the Abstraction Theorem for N, with a. proof similar to the
well-definedness of g above using R in place of ~w-

For new, suppose p0 [[var[6]- comm]R]p1 and w0 [R]w1 • We must show that

The key property is

(ao,eo}[[var[6]](R x ~[6J)](al,el}

for the new variables (a0 , e0 } e [var[O]](W0 x [6]) and (a1 , e1} e [var[6]](W1 x [6]). This is
straightforward to verify. The assumption that p0 and p1 are related then implies

for any v e [6], and this ensures that the first components of the Pi [[6]] (ai, ei} (wi, v} are
R-rela.ted. •

5 Examples of Reasoning

In each of the examples that follow, an unknown non-local procedure is passed a. limited
capability for accessing a. local variable, in much the same way that an abstract type gives to its
"clients" a. limited capability for accessing its representation. The reasoning method employed
involves choosing a. relation that is satisfied by different arguments to the procedure, and then
applying the pa.ra.metricity property to infer a. relational property that pairs of procedure calls
must satisfy.

For the sake of readability, we continue to use sugared notation for code in the examples.
The desugarings into the language of the previous sections should be clear.

We begin by describing a. class of relations that can be used in several examples. Suppose
W is any store shape and E ~ Z, where, as before, Z is the set of integers; we can then define
RE:W-.-+ w X z by

w[RE](w', z} ¢::::::> w = w' and z e E.

Consider any c e [comm](W x Z) such that

skip [[comm]RE] c,

where skip e [comm]W is defined by skip(w) = w. Then, if p e [comm - comm]W,
pa.ra.metricity implies that

(*) p*(skip) [[comm]RE]P[Z](c)

where p* = unl; p[l]; unr: [comm]W- [comm]W. Hence, p*(skip) is the semantics of an
isolated procedure call P(skip). We can use this condition whenever we have a. command c

20

that does not change the values of non-local variables and preserves property E of the local
variable.

For example, consider the relation Rz; i.e.,

w[Rz](w',z) ~ w = w'.

Intuitively, entities will be Rz-related if they "work the same way" on the W part of the stack.
This is a property of z := z + 1 and skip; more precisely, if we define inc e [comm](W x Z)
by

inc(w, z) = (w, z + 1),

then
skip [[comm]Rz] inc.

Then we can use the property (*) to conclude

p*(skip)w[(Rz).t]P[Z](inc)(w,z).

This means that the first component of p[Z](inc)(w, z) is equal top* (skip)w. Clearly, then, the
semantics of variable declarations ensures the first equivalence considered in the Introduction:

begin
integer z;
procedure inc; z := z + 1;
P(inc)

end

P(skip)

It is important here that w = w' when w[RE](w',z): the parametricity property always acts
as the identity relation on non-local variables. This is where the identity extension lemma
and the use of identities in the parametricity constraint on procedure types come into play.

We would like to emphasize that the reasoning method in this example is simply an
instance of reasoning about polymorphic functions using Reynolds parametricity ([48]; see
also [59] for numerous examples of this form of reasoning). The equivalence reduces to the
following property

fst(p[l](Ax. x)) fst(p[Z](Ay. (fst y, (snd y) + 1)))

for a polymorphic function p:'t/1. (ax 1 - ax 1) - (ax 1 - ax 1). This is what we
mean when we say that reasoning about local variables often amounts to proving properties
of polymorphic functions. Of course, it is fairly significant that the polymorphism that we
are concerned with is predicative in nature; but the point remains that the reasoning method
we employ is exactly as in [48, 59]. These methods will be seen below to lead to remarkably
straightforward validations of previously troublesome equivalences.

Before continuing, it is worth pausing to explain why typical counterexamples to this
equivalence, which exist in previous models, are not present here. Let W = {true, false}.
One counterexample is essentially a family of functions

p[X]: [comm](W x X) -+ [comm](W x X)

21

such that

p[X](c)(b,x) = { (•b,x), if c(b,~) =J (b,x)
(b, x), otherwise

Such a p would break the equivalence, because the left-hand block would negate the state
(which consists of a single boolean), whereas P(skip) would leave the state unchanged. How­
ever, this p fails to satisfy the parametricity condition, for though skip [[comm]Rz) inc and
w[R](w, z), it is not the case that

p*(skip)(b) [Rz]p[Z](inc)(b, z) ,

as p*(skip)b is b, while p[Z](inc)(w,z) is (•b,x). The equality test on states is the culprit in
the definition of p: any two states (w, z) and (w, z') are "indistinguishable" from the point
of view of the second domain of the relation Rz, so branching on the equality test violates
parametrici ty.

Our second example demonstrates that the invariant-preserving properties of the models
described in [24, 30] are encompassed by parametricity. If ZfJJ is the set of nonnegative integers,
we again get skip [[comm]Rz$) inc. The property (*)now ensures that z is non-negative when
p[Z](inc)(w,O) = (w',z). This can be used to verify that the value of local variable z is still
nonnegative on termination of the procedure call in

begin
integer z;
z := 0;
P(z := z + 1);

end

Our last example using relations of the form RE is

begin
integer z;
z := 0;
P(z)

end

P(O)

where P:exp[int]--+ comm; we have left the de-referencing coercion (deref) from var[int]
to exp[int] implicit in the argument of the call. The intuition here is that the value of z
will be 0 each time it is used during execution of the call P(z), because P cannot write to z.
Therefore, this should be equivalent to simply supplying 0 as an argument instead of z.

To validate this we can use R{o}. The denotation of 0 is the constantly 0 function in
[exp](W x Z), and the denotation of z, as an expression, is the projection W x Z --+ Z.
These denotations are then related by [exp]R{o}i i.e.,

W _ _,o'---..... z
R{a}l lflz
WxZ z Z

22

because if argument states are related, the Z-valued component is always 0. We can then use
the parametricity of P, as in the other examples, to conclude that (the denotations of) the
calls P(O) and P(z) are [comm]R{o}-related, and the equivalence follows from the valuation
for variable declarations.

Next we consider a relation that does not fit into the RE pattern: the relation L\.w x R,
where R: Z +-+ Z is defined by

zo[R]zl <===* -z1 = zo ~ 0 .

This can be used to validate the equivalence between blocks that use non-negative and non­
positive implementations of a counter in exactly the manner discussed in the Introduction.
The representations of the procedures inc and val are directly related by L\.w x R, and we can
use the parametricity property of procedures to conclude that the calls to non-local procedure
P are related. This implies the desired equivalence because the semantics of new disposes of
the Z-valued component of W x Z on termination, and we are left with L\.w-related results.

We should mention that this last equivalence is in fact valid in the models of [33, 57]. These
models can typically handle representation independence when the different representations
being considered are isomorphic. Our final example shows how non-isomorphic representations
can be dealt with.

The example involves a simple abstract "switch." A switch will have two associated
operations.

flick: turns the switch on; and

on: a predicate that tests whether the switch has been flicked on.

The switch is initially off, but remains on after it has been flicked for the first time.
One representation of the switch will be the evident one using a boolean variable. In the

other, 0 will correspond to the switch being off, and the on position will be represented by
any positive integer. These representations are given in the following two blocks, where Pis
of type (comm, exp[bool]) ---+ comm.

begin
boolean z;
procedure flick; z :=true;
boolean procedure on; on := z;
z :=false;
P(flick, on)

end

begin
integer z;
procedure flick; z := z + 1;
boolean procedure on; on := z ~ 1;
z := 0;
P(flick, on)

end

A typical counterexample, which exists (in one form or another) in the models of [33, 24,
31], is p such that

[X] (c e) (b x) = { (-,b, z), if c(c(b,_ z)) = c(b, z)
p ' ' (b, z), otherwise

The equality test on states is once again the culprit.
This equivalence can be validated in our semantics using a relation of the form ~w x R,

where R: [bool] +-+ [int] is the least relation such that

false[R]O 1\ (n ~ 1 => true[R]n) .

23

6 Algebraic Aspects of First-Order Types

A standard test for the parametricity of models of polymorphism involves connections be­
tween free algebras and the denotations of certain lower-order polymorphic types [48]. For
example, in a model that is "sufficiently parametric," the type V"(. ('y ~ 1) ~ (I~ 1) of
Church numerals will (in the absence of recursion) in fact denote a natural numbers object,
and the type v,. (ax 1 ~ 1) x 1 ~ 1 will be isomorphic to the type list[a] of finite lists
over a. These representations supply a very clear picture of low-order polymorphic types, and
are an indication of the constraining effect of the parametricity conditions under considera­
tion. Our purpose in this section is to describe how our parametric semantics yields similar
representations of first-order Algol types.

To begin, we consider [comm ~ comm]l. We can use an argument of Plotkin [40] to
precisely characterize the elements in this set. If p E [comm ~ comm]1 then there is a
number n such that p[N] (id{*} x succ) (*, 0) = (*, n), where N is the set of natural numbers
and succ is the successor function. Then for any X, c: X ~ X and x E X, we can set up a
relation R: N- X where O[R]x and m[R]x' =>- m + l[R]c(x'). The functions succ and care
then related by R ~Rand we can use parametricity to conclude that p[N] (id{*} x succ) (*, 0}
and p[X] (id{*} x c)(*, x) are R-related and, in particular, the latter is (*, c" (x)), where c0 =
skip and cn+l = c ; en. Thus, p is the n-th Church numeral.

In an Algol-like language, the n-th Church numeral is defined by Ac: comm. en. From this
we can immediately see two interesting facts. First, every element of [comm ~ comm]1 is
definable by a closed term. Second, up to semantic equivalence, the local-variable declarator
new does not figure into closed terms of this type at all, for any closed term of this type will
be equivalent to one that doesn't use new. One has to go up to closed terms of second-order
type, or to open terms of first-order, for new to make a difference.

What we have done here is to follow the analogy between type variables and store shapes.
[comm ~ comm]1 corresponds to v,. (1 X"(~ 1 X"()~ (1 X"(~ 1 X"(), and, as 1 X"(~"(,
this should in turn be the Church numerals. The reader familiar with [48] will then be able to
see how similar representations can be obtained for other first-order Algol types. We collect
a few examples into the following proposition.

Proposition 6 (Reynolds)

We have the following isomorphisms, where a is a store shape.

[exp[8] ~ exp[8')]a ~ (a~ [8]) ~ (a~ [8'])
[exp[8] ~ comm]a ~ (a~ [8]) ~(a~ a)
[comm ~ exp[8)]a ~ (ax list[a] ~a)~ (a~ [8])
[comm ~ comm]a ~ (ax list[a] ~a)~ (a~ ax list[a])

Proof: These isomorphisms are based on observations in [48]. We will outline the proof of the
last isomorphism to indicate that these arguments do go through for our semantics of Algol
types.

Any c: a x Z ~ a x Z, for some store shape Z, can be decomposed into two functions
c1: ax Z ~a and c2 : ax Z ~ Z. For a fixed initial state (s, z} E ax Z, let R: Z- list[a]
be the smallest relation such that

z[R]£ z'[R]l =>- c2 (a, z')[R]cons(a, l)

24

where E is the empty list. One can then define a suitable ci such that

C1 [~a X R - ~,.]ci

and we have
{c1 ,c2}[[comm]~a x R]{c~,cons}

where here we are using {!, g} : A - B x C to denote the tupling function obtained from
f: A-Band g: A- C. Then if p e [comm- comm]a we get that

p[Z]c(s,z}[~a x R]p[list[a]]{c~,cons}(s,E),

and sop is completely determined by the action of the function p[list[a]]. Furthermore, the
arguments to this function can be taken to be of the form {!,cons} and (s, E) so, as cons and
E are fixed, this is determined by a function of type (ax list[a] - a) - (a - a x list[a]).
Conversely, it is easy, using this R, to see how any function of this type determines an element
of [comm- comm]a. •

Notice that function types with exp[8] in a contravariant position are represented in a
pointwise fashion. A meaning at such a type can be applied at a "later stage," after local
variables have been added to the stack, but such a function is completely determined by
its behaviour at the "present stage." The reason is that expressions may read from, but
not write to, local variables. If we pass an argument e e [exp[8]](a x 1) and evaluate
the resulting function call in state (s, n), then parametricity can be used to show that this is
equivalent to passing the evident corresponding expression e' e [exp[8]]a x { n }. The pointwise
exponentiation arises because ax {n} ~a. (This principle was at work in the example from
the previous section involving P(O) and P(z)). Of course, not all elements of these types will
be definable; for example, definability of all elements of exp[int] - exp[int] is not possible
for computability reasons.

For the types with comm in a contravariant position, changes to a local variable by a com­
mand argument are mirrored by cons: a list of a's records non-local states when a comma.nd
argument is executed. The representation of comm - exp[8] illustrates the non-single­
threaded nature of the semantics. In a semantics that captured single-threading properly
we expect that the occurrences of list[a] would disappear, because single-threading should
mandate that commands cannot be executed within expressions.

These representations are limited to first-order types: we do not know of characterizations
of level-two types such as, for example, (comm- comm)- comm. A similar phenomenon
occurs in models of polymorphism: much is known about level-two polymorphic types, but
considerably less for level three. (Here our understanding breaks down at level two because
these types correspond semantically to level-three functional types.)

The situation in the presence of recursion is more complex due to lifting, and we do not
have a clear general picture, given by a clean scheme like the one in [48], of the denotations
of all first-order types in the presence of recursion. Characterizations of certain specific types
have been obtained, however; we illustrate with [comm- comm]l.

Let Vnat be the vertical natural numbers, i.e., the natural numbers with the usual "less
than" order, and with an extra top element oo. VnatP is the vertical naturals with the
ordering reversed. Then

[comm- comm]l N.L ® Vnat 0 P

25

where 181 is the smash product.
An outline of the proof of this isomorphism is as follows. Using the isomorphism 1 x a ~ a,

a meaning in [comm- comm]l will be a family of continuous functions

satisfying the parametricity condition. If p[N] succ 0 = l_ then p corresponds to (1_, oo}. If
p[N] succ 0 = n then there will be a smallest m such that p[N] (succ[n + m]) 0 = n, where
(succ[k]) a = a+ 1 if a < k and l_ otherwise. In this case p corresponds to (n, m}. The
desired isomorphism can then be shown using parametricity with an argument similar to the
one used by Plotkin for the Church numerals: we define an appropriate relation that relates
an argument in a- a.L to a succ[k].

As before, every element of this domain can be defined by a closed term, with the ap­
propriate boolean tests and a term diverge: comm that denotes the constantly-1_ function.
Specifically, (1_, oo} is defined by diverge, and (n, m} is defined by

.Xc: comm. if (do cn+m result 1) = 1 then~ else skip

The test (do~+m result 1) = 1 will converge, and return true, iff cn+m converges. The skip
branch never gets executed.

It is now possible to appreciate the role of Vnat0P. It concerns "lookahead," in the sense
that we look to see if n + m executions of c will converge and, if so, we execute c n times.
This illustrates how a semantics that properly captures single threading could perhaps lead
to simpler representations. For example, the closed terms of type comm - comm definable
without do- result- are, semantically, in correspondence with N.L, which is considerably
simpler than N.L 181 Vnat 0P.

7 Relations and Reflexive Graphs

The category-free presentation, though quite elementary, is also rather ad hoc in some respects.
In the next few sections we will endeavour to place the model into a categorical context,
providing some justification for the definitions.

A first attempt would be to say that the model lives in a category of "relators" ([27, 21, 1]).
The objects map store shapes and relations between them to sets and relations between them
in a way that preserves identity relations, and the morphisms are families of functions, indexed
by store shapes, satisfying a parametricity constraint. While it is true that each type in our
model determines a relator, the relator viewpoint is not quite satisfactory. The appropriate
notion of exponentiation for relators is pointwise: (A - B)(X) = A(X) - B(X) for X
a store shape or relation. A better categorical explanation of the model would connect our
interpretation of procedure types with exponentiation, and our interpretation is not pointwise.

This is the point at which we must bring out the functor-category structure, which shows
up in the category-free presentation in the use of expansion functions. It will be seen that
each type determines a functor from the category of store shapes from [33] to the category
of sets. The interpretation of procedure types then has some of the flavour of a functor­
category exponential, but with additional parametricity constraints. A suitable category will
be obtained by considering both the relator and functor aspects of types, along with naturality
and parametricity conditions on morphisms.

26

The reader might have noticed that naturality properties were never used in proving any of
our results in previous sections, or in reasoning about example equivalences. The place where
naturality does come in is in trying to prove the validity of the laws of the typed >.-calculus. It
would have to be accounted for if we were to validate these laws directly in the category-free
semantics; in the categorical semantics it will be crucial to get a Cartesian closed category.

In the following, we will need functor-like maps that preserve a certain kind of relational
structure. There is a fundamental difficulty, however. We do not want to insist on relations
being composable, and so the structure that must be preserved is not really "categorical." One
reason for not requiring composability is that, as is well known, composition is not preserved
by logical relations at higher types. Another is that we want to be able to generalize to n-ary
relations for n > 2, and then there is no evident notion of composition.

We propose that the appropriate way to describe the relational structure that is needed
is to use the notion of a reflexive graph. A reflexive graph is conventionally a set of vertices
with (oriented) edges between them; furthermore, for any vertex v, there is a distinguished
edge from v to itself, the identity on v. Notice that a reflexive graph is more structured than
a set (because there are edges as well as vertices), but less structured than most categories
(because edges need not be composable).

We will actually consider a generalization, familiar to category theorists, where categories
of vertices and edges are allowed [3, 17, 14]; the conventional notion of reflexive graph be­
comes the special case in which the vertex and edge categories are small and discrete. In
some examples, the edge objects will be relations over pairs of vertex objects, and the edge
morphisms will be relation-preserving pairs of vertex morphisms; however, in general, edges
are not required to be any of the usual categorical forms of relation [21, 27].

Here is a precise definition: a reflexive graph 9 consists of two categories, 9v (vertices) and
9 e (edges), and three functors between them as follows:

960

such that 91 ; 96, = 19• fori= 0, 1, where; denotes composition in diagrammatic order and
19 • is the identity functor on 9v. Intuitively, 96, specifies the i'th domain for each edge and
edge morphism, and 91 specifies the identity edge for each vertex and vertex morphism.

An equivalent and more elegant presentation is as follows: a reflexive graph is a functor
9: G- CAT, where CAT is the meta-category of all categories and functors between them
[22], and G is the two-object category whose (non-identity) morphisms are as follows:

Do
(I
v ---='---- e

~~_8_1~)

with I ;8; = idv fori= 0, 1, where idv is the identity morphism on v. (More generally, reflexive
graphs with n-ary edges would be generated by the two-object category having non-identity
morphisms I: v - e and 8;: e - v for i = 0, 1, ... , n - 1, with a similar commutativity
requirement.)

As our first example, we define a reflexive graphS (sets) as follows.

27

• The "vertex" category, Sv, is the usual category of sets and functions.

• The "edge" category, S., has binary relations on sets as objects and relation-preserving
pairs of functions as morphisms; i.e., a morphism with domain R: W0 +-+ WI and co­
domain S:Xo +-+ X1 is a quadruple (R,fo,JI,S) such that fo[R ~ 5]!1. We will use

fo
Wo-Xo

the relational-parametricity diagram Rf ts to depict such a morphism. The

composite of

fo
Wo-Xo

Rl fs and

wiTxi

wiTX1

Yo fo;Yo Xo -Yo Wo ---=-.:...:...::....:._-..Yo

st fr is then defined as Rl fr, and

xl -YI YI wi YI
fl;gl

idwo
Wo-Wo

the identity morphism on a relation R: Wo +-+ W1 is Rf fR.
wl :----d wl

1 W,

• Functors S6,: S. ~ Sv for i = 0, 1 are defined by S 6, (R: W0 +-+ W1) = W; and

w----L-x
• Functor S1:Sv ~ S. is such that S1(W) =~wand S1(f: W ~X)= ~w l t~x

w1 x

Category S. is the category of relations over sets presented in [21]. Furthermore, the Sh,
are similar to the forgetful functor U used there in a categorical treatment of the (first­
order) "abstraction theorem," and sf is similar to the functor J used there in a categorical
treatment of the "identity extension lemma." Hence, some of the key entities introduced in
[21] are incorporated in the reflexive graphS.

As our second example, we define a reflexive graph V (domains) as follows.

• Vv is the category of directed-complete partially-ordered sets and continuous functions.

• v. has complete binary relations as objects, and relation-preserving pairs of continuous
functions as morphisms. Composites and identities are evident .

• The functors v6,:v. ~ Vv fori= 0,1 and VI:Vv ~ v. are defined exactly as for s.

Finally, we define a reflexive graph W (worlds) having the small category :E of "state
shapes" described in [33] as its vertex category Wv. The category :E is as follows.

• The objects are (certain) sets, including desired data types, such as { true,jalse} and
{ -2, -1, 0, 1, 2, ... }, and all finite (set) products of these.

28

• The morphisms from W to X are all pairs ¢, p such that

- ¢ is a function from X to W;

- pis a function from W x X to X, where the x here (and throughout this example)
is the set-theoretic Cartesian product;

- for all x E X,
p(¢(x), x)

for all x E X and w E W,
¢(p(w, x))

for all x EX and w,w' E W,

x·
'

w·
'

p(w,p(w',x)) = p(w,x).

For example, there is an "expansion" morphism (¢>,p):W- X such that X= W x Y
for some data type Y with ¢(w, y) = w and p(w, (w, y)) = (w, y); i.e., ¢> "projects" a
large stack into the small stack it contains, and p "replaces" the small stack contained in
a large stack by a new small stack, leaving unchanged local variables on the large stack.
In fact, Oles shows that any (¢, p): W- X induces a set isomorphism X~ W x Y for
some non-empty set Y; that is, up to isomorphism, every morphism is an expansion.

• The composite of morphisms (¢,p):W- X and (1/Y',p'):X- Y is (1/Y",p"):W- Y
such that ¢" = ¢';¢and p"(w, y) = p' (p(w, ¢' (y)), y).

• The identity morphism on W is (¢, p) such that ¢(w) = w and p(w, w') = w.

A category We of relations over I: can be defined as follows.

• The objects are relations R: W +-+ X, where W and X are :!:-objects.

• A morphism with domain R: W0 +-+ W1 and co-domain S: X0 +-+ X 1 is a quadruple
(R,(¢ 0 ,p0),(¢1,pi),S) such that ¢0[S- R]¢1 and Po[R x S- S]p1. Again, we use

(1/Yo, Po) Wo --'-'---'-:.......;c.. X o

diagrams of the form Rt ts to depict morphisms in We·

wl--_.,...xl
(¢1, pl)

• Composition and identities are defined straightforwardly in terms of those in I:.

We can now complete the definition of W by using diagonal relations for the identities,
and defining the domain functors in the evident fashion.

The definition of "related" I:-morphisms above is particularly noteworthy:
rxr0 (!/Yo, Po) X X !/Yo TXT TXT X Po X
YV' o o - rr o rr o X o --- o

Rt ts is a morphism in We iff both st tR and R X st ts
w~ (¢>hPd x~ x1 ~W1 w~ x x~-----p.;--x~

are morphisms in Se. This definition ensures that appropriate relations will be preserved
by variable de-allocation (using the "projections" ¢1) and by state changes in larger worlds
induced by changes at smaller ones (using the "replacements" p;). Notice that We is not a
category of relations over ~ in the sense of [21]; in fact, ~ does not even have a terminal
object.

29

8 Parametric Functors and Nat ural Transformations

Next we describe a category of "parametric" functors and natural transformations. The
description will be highly tailored to the specific definitions of W and S, but at the end
of the section we sketch a more general setting for the definitions.

A parametric functor from W to S consists of

• a mapping F0 from W.,-objects to S.,-objects;

• a mapping F1 from W.,-morphisms to S.,-morphisms; and

• a mapping F2 from We-objects to Se-objects

such that

• if f: w ~ x in W., then F1 (f): F0 (w) ~ F0 (x) in S.,;

• F1 (idw) = idFo(w) for every W.,-object w;

• F1(J; g)= F 1 (f); F 1 (g) for all composable W.,-morphisms f and g;

• if R: w ~ x in We then F2(R): Fo(w) ~ Fo(x) in Se;

• F2(~w) = ~Fo(w)' for every W.,-object w; and

fo
wo--xo

• if Rt ts in We, then

FI(Jo)
Fo(wo) Fo(xo)

F2(R) 1 1 F2(S) in Se·

wlhxl Fo(wi) ---F0 (xi)
F1(!1)

The first three conditions say that F0 and F 1 constitute a conventional functor from W., to
S.,; the next two conditions say that F0 and F2 constitute a "relator" [27, 1]; and the last
condition is a parametricity constraint. This last condition is closely related to the Expansion
Parametricity Lemma and is crucial for function types to behave properly, e.g. for currying to
satisfy relevant parametricity conditions. We will adopt the usual notational abuse of using a
single symbol such as F to denote all three mappings.

If F and G are parametric functors from W to S, 'TJ is a parametric natural transformation
from F to G if it maps W.,-objects to S.,-morphisms such that

• for every W.,-object w, q(w): F(w) ~ G(w);

F(w) TJ(w) G(w)

• for every W.,-morphism f: w--+ x, F(J) 1 1 G(J) commutes; and

F(x) TJ(x) G(x)

F(wo) TJ(Wo~ G(wo)

• for every R: w0 ~ w 1 in We, F(R) 1 1 G(R) in Se.

F(wt)-() G(wt)
'TJ W1

30

The first two conditions say that TJ is a conventional natural transformation from F toG, and
the last condition is a parametricity constraint.

Parametric natural transformations compose in the obvious point-wise way (like "vertical"
composition of natural transformations). The category having all parametric functors from
W to S as objects and all parametric natural transformations of these as morphisms will be
denoted sw.
Theorem 7

sw is cartesian closed.

Proof: Products can be defined pointwise:

(F x G)(w) F(w) x G(w)
(F X G) {f) F(f) X G(f)
(F X G)(R) = F(R) X G(R)

with the obvious (parametric) projections. A terminal object 1 has 1 (X) = { *}, 1 (¢>, p) = id{.}
and 1(R) = d{•}

For exponentiation, we first define the analogue of "representable" functors [22, 16]. If X
andY are store shapes then hX(Y) = Homw.(X,Y), and for f and g maps in E, hl(g) =
Homw.(f,g), so that hi g (h) f; h;g. If R: X 0 +-+ X1 and S: Y0 +-+ Y1 , then hRS: hxoyo---.
hx, Y1 is such that

Xo _l!_yo

iff Rt ts in We.

x~~Y~

We write hx (-)for the parametric functor that sends Y to hxY, f to hidx f and R to ht.x (R).
Exponentiation is then defined on store shapes as follows:

cF X = Homsw(hx X F,G);

on morphisms,
(GF f p)[Z](g, a) = p [Z] (!; g, a) ;

and on relations, p[GF R]q iff

VS: Wo +-+ W1. p[Wo] [hRS x G(S)- F(S)]q[Wt)

It is not difficult to show that GF satisfies the functor and relator requirements, and the
condition that a parametric functor send related Wv-morphisms to related Sv-morphisms.

The application and currying maps are exactly as in presheaf categories. The application
map app: F x GF ---=-+ G is

app [W](a,p) = p[W](idw, a).

Naturality follows as usual. To see that it is parametric, assume p0 [(GF)R]p 1 and a0 [F(R)]a 1•

idwo
Wo--Wo

As Rt tR, we have that (idw0 , a0)[hR R x F(R)](idw,, a 1), and the definition of GF (R)

w~~d w~
I W,

31

implies (Po[Wo](id, a0))[G(R)](p1[Wl](id, a1)). The Currying map

curry: Hom(F x G, H) ---+- Hom(F, HG)

lS

curry m W a(!, b) = m X (F(f)a, b)

where f: W -+ X in Wv· The naturality of currym is shown as usual, and parametricity is
proved using the condition that F send related Wv-morphisms to related Sv-morphisms. That
curry and app have the required properties of exponentiation is straightforward; this is where
the naturality requirements are crucial. •

We now show how to interpret types as parametric functors from W to S. We use the
angled brackets((·)) to distinguish the parametric-functor semantics from [·].

For expressions:

• for every Wv-object W,
((exp[8]))W = W-+ [8] ,

• for every Wv-morphism (¢, p): W-+ X and e E ((exp[8]))W,

((exp[8]))(¢,p) e = ¢; e,

and

• for every R: Wo +-+ W1,
« exp[8J» R R-+ Ll[6] •

For commands:

• for every Wv-object W,
((comm))W = W-+ W;

• for every Wv-morphism (¢,p): W-+ X, x EX, and c E ((comm))W,

((comm))(¢,p) c x = p(c(¢(x)),x),

and

• for every R: W0 +-+ W1,
((comm))R = R-+ R.

For the morphism part what we do is execute con the small part of the stack, i.e. c(<f>(x)),
and then use p to replace the small part of x with the resulting final state.

The parametricity conditions on these functors are easily verified. It is noteworthy that
these pointwise definitions are actually isomorphic to what is obtained by introducing the
obvious contravariant "states" functor S and defining

((exp[8])) = S -+ 0[8]

((comm)) = S -+ S

32

using a parametric version of "contra-exponentiation" [31], where OD is the constant functor
whose object, morphism, and relation parts always yield D, idn, and b.n, respectively. This
is an indication of the effectiveness of the parametricity constraints.

For storage variables:

((var [8])) X

((var[8]))(¢, p)

((var[8]))R

([8] ----+ ((comm))X) x ((exp))X

(id[6] ----+ ((comm)) (¢, p)) x ((exp))(8, p)

(!J.[6] ----+ ((comm))R) x ((exp))R.

For procedures we use exponentiation in SW:

((jj ----+ (3)) = ((3)) (8) .

Here, ((ii)) is the product of ((Oi)) for the components of the vector. Of course, as sw is a ccc we
could ignore vectors and interpret procedure types in a curried syntax: (0----+ 0')} = (0'))«11».

The interpretations of terms can be given exactly as in [33]. We have already seen the
application and currying maps in the proof of Proposition 7, and these are exactly as in functor
categories. We will define

new: ((var----+ comm)) ~ ((comm))

to indicate how variable declarations are treated. For Wv-object W, p e ((var----+ comm))W
and we W,

new6 Wpw = fst(p[Wx[8]](f,(a,e))(w,t5))

where f: W - W x ((8)) is an "expansion" morphism in Wv, 8 e ((8)) is the standard initial
value of new variables, and (a, e) e ((var)) (W x Z) is the new variable, defined as follows:
a(z')(w, z) = (w, z') and e(w, z) = z.

We conclude this section by sketching a more general context for these definitions; it can
be skipped without loss of continuity. A morphism M: 9 ----+ 1-i of reflexive graphs is a pair of
functors Me and Mv that map edges to edges and vertices to vertices in a way that preserves
domains and identities; i.e.,

9e
Me

'He
gd

Mv
! 1-i6;

9v 1-iv
gd

Me
!1t1

9e 'He
commutes for i = 0, 1. Composition of graph morphisms is defined component-wise.

Notice that a morphism of reflexive graphs is nothing other than a natural transformation
between graphs viewed as functors. Furthermore, what we called a "parametric" natural
transformation above is an instance of the concept of modification [15]. (More precisely, the
category sw is equivalent to the category having natural transformations between the graphs
W and S (viewed as functors) as objects and modifications as morphisms.) This gives some
assurance of the appropriateness of the various conditions in the definition sw, which uses
simplifications that depend on specific structure in W and S.

33

Another perspective on our model can be given in terms of internal categories. As is well
known, reflexive graphs in CAT can be equivalently viewed as internal categories in a category
of (large enough) reflexive graphs. Parametric functors then correspond to internal functors
between internal categories, and parametric natural transformations to internal natural trans­
formations. We gave the "reflexive graphs in CAT" presentation here because we felt that it
might be (slightly) more accessible.

However, the internal category viewpoint perhaps shows more directly the connection to
[47, 33]: our semantics could be considered as essentially that of [33], but re-cast in a context
where terms like "functor" must be understood as pertaining to categories that live in another
category. This is the reason why the definitions of currying, application, new, etc., for (the
categorical presentation of) our model are just like those given by Oles. Of course, the interest
in our model derives more from the semantics of types than of valuations. The uniformity
conditions arising from relational parametricity give us stronger reasoning principles than in
a standard functor-category framework.

9 When Parametricity Implies Naturality

We now undertake to explain the connection between the category-free and parametric-functor
presentations of our semantics, and also to uncover why an "uncurried" treatment of types is
used in the category-free version.

First, we need a result from [33] about morphisms in the category Wv of store shapes.

Lemma 8 (Expansion Factorization (Oles))

Every Wv -morphism W --+ X can be factored into an expansion followed by an isomorphism:

W~WxY~X.

Recall that the Isomorphism Functoriality Lemma played an important role in the category­
free semantics. A condition analogous to it was not needed in the definition of reflexive graph
because of the following result which, it should be noted, applies to any parametric functor
(and not just definable ones).

Lemma 9 (Isomorphism Correspondence)

For every parametric functor A, if(</>, p): W--+ X is an isomorphism then the function A(p, </>)
and relation A(R) have the same graph, where R: W +-+ X is the relation having the same
graph as </>- 1 •

Proof: Let f = (¢, p). From the definition of related Wv morphisms we have

w~w w~w
~wl !R and Rl t~w.

w1 x xj=lw

34

As A is a parametric functor, we obtain

A(W)
A(idw)

A(W) A(W)
A(idw)

A(W)

A(~w)! 1 A(R) and A(R)! 1 A(~w)-
A(W)

A (f)
A(X) A(X) A(J-1) A(W)

If a E A(W) then the left-hand diagram implies that a[A(R)]A(!)a, using the fact that A
preserves diagonal relations and identity morphisms. Conversely, if a[A(R)]b then the right­
hand diagram implies that A (f) a= b, and the graphs of A (f) and A(R) are therefore equal. •

We are now in a position to give (sufficient) conditions under which the naturality require­
ments are superfluous.

Theorem 10 (Naturality)

Suppose A: W --+ S is a parametric functor and p[-]:A(-) --+ (([3)) (-) is a family of functions
satisfying the following parametricity condition: for all R: X 0 +-+ X1 ,

A(Xa) p[Xa] (([3))(Xo)

A(R) 1 1 «f3))(R) .

A (X I) -p-=-[x--=1]:-- (([3))(X I)

Then p is automatically natural: for all g: X -+ Y in W.,,

A(X) p[X] (([3))(X)

A (g) l l «f3))(g).

A(Y)--p~[Y~]-.«f3»(Y)

Proof: Consider any g. By the Expansion Factorization Lemma it can be factored into a
composite e ; i, where e: X --+ X x W is an expansion and i: X x W --+ Y is an isomorphism.
The result will follow if we can show commutativity of

A(X)
p[X]

((/3)) (X)

A(e) l
p[X X W]

l (([3)) (e)

A(X X W) (({3)} (X x W)

A(i) 1
p[Y]

1 (([3)) (i)

A(Y) «!3)} (Y)

The commutativity of the bottom part follows immediately from the Isomorphism Correspon­
dence Lemma and the parametricity property for p. We will show the commutativity of the
top part for j3 = comm; the other base types are treated similarly.

35

Consider any wE W. Define Rw:X +-+X X W by x[Rw](x',w') iff x = x' and w = w'.
X idx X

Clearly we have ~x 1 1 R . Thus, as A is a parametric functor, for any a E A(X)

X e XxW
we have that a[A(Rw)]A(e)(a), and so, using the parametricity of p, we get

p[X] ax [Rw] p[X x W](A(e)a) (x, w}

for any x EX. From the definition of Rw, and of ((comm}} on morphisms, this implies that

((comm}}(e) (p[X]a) (x,w} = p[X x W](A(e)a) (x,w).

As this argument works for any w E W, the commutativity of the top part of the diagram
follows. •

Note that the naturality constraints in ((if- fJ}}X are also superfluous by this result, taking
A= hx x ((if}}.

We are finally in a position to see where the category-free semantics of types given earlier
comes from. First, in a type if- f3 we can do away with all naturality constraints, as these are
implied by parametricity. Second, by the Expansion Factorization Lemma any Wv-morphism
factors into a "true expansion" followed by an isomorphism. Further, by the Isomorphism
Correspondence Lemma the action of a procedure meaning on the isomorphism part of such a
factor is completely determined by the action of parametric functors on relations. Thus, when
defining a procedure meaning pat store shape W we do not need to consider all Wv-morphisms
out of W, but only the "true expansions" of the form W- W x X. {An analogous property
for certain functor categories has been observed by I. Stark.)

Theorem 11 (Representation)

Suppose A: W - S is a parametric functor. Then (((fJ}}A) W is isomorphic to the collection of
those families

p[-]: A(W X -) - ((fJ}}(W X -)

satisfying the following parametricity condition: for all R: X 0 +-+ X 1 ,

A(W x X 0) -----=-p--=-[X_o],__((fJ}}(W x X 0)

A(~w x R) 1 1 ((fJ}}(~w x R)

A(W X Xi) p[Xd ((fJ}}(W X XI)

Proof: Let D denote the collection of p's satisfying parametricity. We will set up an iso­
morphism f:((fJ))AW - D with inverse g. First we have fm[X] = m[W x X](e,·},
where e: W- W x X is the expansion. Conversely, if we have a map (¢>,p): W - Z then

this factors into an expansion followed by an isomorphism W:. W x Y ~ Z. Then we set
g p [Z] ((¢>,p), a} = ((fJ}}(i) (p[Y](A(i- 1)a)), where i- 1 is the inverse of the iso i.

(In this definition of g, the factors e and i are not uniquely determined; however, it is
easy to show, using parametricity on isomorphisms, that ((fJ}}(i) (p[Y](A(i- 1)a)) is uniquely

36

determined for any factorizations. In any case, Oles has shown how a canonical choice of
factors is possible.)

That f m satisfies parametricity is immediate from the parametricity of m, using the fact
W e WxX

that ~w 1 1 ~w x R, for any R, and for e the expansion. That g p satisfies the

W e WxX
parametricity condition for ((f3))A W follows from the parametricity condition on p, together
with the Isomorphism Correspondence Lemma and the Isomorphism Factorization Lemma.
Naturality is then a result of the Naturality Theorem. Thus we see that f and g are well­
defined. We can show that they are inverse as follows.

g (! m) [Z] ((</J, p), a) ((!3)) i(fm[Y] (A(i- 1)a))
((f3))i(m[W x Y](e,(A(i- 1)a)))
m [Z] ((e ; i), a)
m [Z] ((</J, p), a)

where the second-last step uses naturality of m and the fact that i and i- 1 are inverse isos.
Conversely, the definitions of f and g give us

f (gp)[X] a g p [W x X] ((e: W - W x X), a)
((/3)) i (p[X]a)

and in the factorization of e (in the last step) we can take i as the identity (because e; id = e),
so f (g p)[X]a = p[X]a. •

Thus we see that the calculation of (the object part of) function types in the category-free
semantics is isomorphic to what is obtained from exponentiation in the parametric-functor
semantics. It is also not difficult to see that the relation parts of the two semantics are iso­
morphic, and that the expand maps correspond to the morphism parts of parametric functors.
Furthermore, the semantics of .A-abstraction and application that were given are precisely
those obtained (after suitable uncurrying) from the Cartesian closed structure of sw. The
details of these aspects of the correspondence should be abundantly clear to a reader who has
followed so far, and are sufficiently routine to warrant omission.

There is one final matter that we must clear up. We have thus far steadfastly adhered to
an "uncurried" presentation of the semantics of types, whereas in the ccc sw this is of course
not necessary. The uncurried presentation is needed, however, for the category-free semantics
to work properly. The reason is that parametricity does not imply naturality in general, but
only for parametric functors of a specific form.

It will be simpler if we discuss this relationship between parametricity and naturality
first in the context of the category-free semantics, and then translate to the categorical one.
Consider the type comm- comm, and the family of elements m[-] e [comm- comm][-]
defined by

m[X][Y]c(x,y) = (x,y'), where c(x,y) = (x',y').

This family of elements is "parametric" in the following sense: for all relations R: X - X'
between store shapes, m[Xl[[comm- comm]R] m[X']. (Following the analogy with poly­
morphism, m is essentially an element of Vot't/1. (ax 1- ax 1) - (ax 1- ax 1)). For

37

m to be natural with respect to expansions we would need that

if m[X x Y][Z]c((x,y),z) = ((x1,y1),z1}
and m[X][Y x Z]c*(x, (y, z}} = (x2, (y2, z2}}
then x1 = x2, y1 = y2, and z1 = z2

where c* is obtained from c by the evident associativity isomorphism. From the definition of
m, if c((x, y), z) = ((x, y'}, z}, so c* (x, (y, z)) = (x, (y', z), we get that

m[X x Y][Z)c((x, y}, z} = ((x, y}, z}

while
m[X][Y x Z]c*(x, (y, z}} = (x, (y', z)}.

The naturality property fails because y and y' need not be equal, as c can certainly change
this component.

Expressing this argument more categorically, we can define a family of functions

m[-]: 1(-)--+ ((comm--+ comm)}(-)

that satisfies parametricity, but not naturality. The definition is

m[X](*)[Z]((¢, p), c) s = p(¢(s), c(s)}.

This clearly satisfies parametricity, but the naturality diagram

m[X]
{ *} ----=--~-- ((comm --+ comm})X

idl l ((comm--+ comm))e

{*} m[XxY] ((comm--+comm))(XxY)

fails, for e an expansion, using essentially the same counterexample as above. That is, for

e': X x Y--+ (X x Y) x Z

the state m[X](*)[(X x Y) x Z]((e; e'), c) ((x, y}, z) will not necessarily be equal to the state
m[X x Y](*)[(X x Y) x Z](e', c) ((x, y), z).

From this we see a curious property. While parametricity implies naturality for all families
of maps in the correct position to qualify as a transformation from ((comm)) to ((comm)}, the
analogous property does not hold for maps from 1 to ((comm--+ comm)). Thus, we see the
reason for the uncurried presentation of types that we gave in the category-free semantics:
the property that relational parametricity implies natura/ity is not stable under currying and
uncurrying isomorphisms.

At this point it is worth mentioning that these observations are not at all at odds with
the result of [41] that relational parametricity implies (di)naturality. This result applies under
assumptions that are not met here. (For instance, in [41] the source and target categories are
the same, while here the source Wv is different from the target Sv.)

38

10 The PER Model

In presenting a model based on partial equivalence relations we are taking the opposite tack
to the one taken with the relational model. We begin with a presentation based on functors
and natural transformations, and work our way back towards a functor-free description.

Once the decision has been made to re-cast the ideas of [47, 33] in a realizability setting, the
definition of the model falls out almost immediately. We work with a category of "realizable"
functors PERI:, where PER is the usual category of partial equivalence relations and E is a
suitable version of Oles's category of store shapes. As most of the definitions are essentially
as in [33], we will move fairly quickly over the material in this section. The point of the
development is to show how this simple re-casting of the Reynolds-Oles ideas gives us good
uniformity conditions for reasoning about local variables.

We will be working with categories equipped with a notion of realizability. These structures
can be viewed elegantly as internal categories in the effective topos, or in the category of w-sets
(see [12, 13, 20]). To simplify the presentation we will keep internal-category aspects of the
model in the background (though this viewpoint certainly guides the definitions).

We use m · n to denote Kleene application on w, the natural numbers (i.e., the application
of the m'th partial recursive function ton). (-,-)is a recursive bijection from wxw tow, and
fst and snd are numbers such that fst · (m, n) = m and snd · (m, n) = n. We let pid denote
a code for the identity function on w, and pcomp a realizer for composition in diagrammatic
order, so pcomp · m · n ·a = n · (m ·a). (We adopt the convention that Kleene application
associates to the left.)

A per A is a partial equivalence relation (transitive, symmetric) on the natural numbers.
The equivalence class of n is [n]A = {m I n[A]m}. The set of equivalence classes is Q(A) =
{[p]A I p[A)p}. The domain of A is dom(A) = {n I n[A]n}.

A morphism f: A -+ B of pers is a function from Q (A) to Q (B) such that

3n. \fp. p[A]p implies J((p)A) = [n · P]B

(This assumes that n·p is defined.) We say that n realizes f (notation: n I= f), and often write
lnl: A -+ B to indicate a map that n realizes. Composition is just composition of functions.
This defines the category PER.

Ob(PER) and Mor(PER) are the sets of objects and morphisms of PER. There is no
notion of realizability for objects of PER, or rather this notion is trivial:

\fA e Ob(PER) \in. n I= A.

PER is cartesian closed. A terminal object 1 is the per that relates all natural numbers, so it
has one equivalence class. If A and B are pers, then the pers Ax B and A=? B are defined by

{a,b)[AxB] (a',b') iff a[A)a' 1\ b[B)b',

m[A=?B]n iff \fa,a'.a[A)a'implies (m·a)[B](n·a')

Again we will ignore recursion in this semantics. It could be incorporated using one of the
PER categories that possess domain-theoretic structure [2, 5, 35).

39

10.1 Store Shapes

Oles's construction of the category of store shapes can be carried out starting from any category
C with finite products, by expressing the equational constraints on morphisms as commutative
diagrams. The resulting category L: (C) is as follows. (The proof that this is indeed a category
follows routinely as in (33).)

OBJECTS. The objects are those of C.

MORPHISMS. A L:(C)-morphism from W to X is a pair of maps ¢:X ~ W and
p: W x X~ X in C such that the following three diagrams commute:

X X X cp X id w X X

diagl lp
X ---id.,.--..-X

fst x (snd; snd) w X (W X X) w X X

id X pl lp
w x x-----::-P----x

IDENTITIES. The identity on X is (idx, fst), where fst is the first projection.

COMPOSITION. If cp,p:X ~ Y and cp',p':Y ~ Z, their composite is cp",p" where
cp" = cp'; cp and p" is (((id x ¢'); p),snd) ; p'. (Here(·,·) is the pairing associated with
the Cartesian structure in C, not the recursive pairing bijection on w.)

For example, L:(C) is Oles's category of store shapes for a suitable small cartesian subcat­
egory C of the category of sets. More interestingly (as pointed out by A. Pitts), the category
We of relations between store shapes from Section 7 is also a category of the form L:(C), for C
a suitable (small) subcategory of the category Se of binary relations and relation-preserving
pairs of functions. This is further justification for the definition of related Wv-morphisms.

We are going to work with L:(PER) as our category of store shapes; in this section, we
simply call this L:. As with PER, there will be no realizability relation for objects. For
morphisms, if (cp,p):W ~X in L: then (m,n) f= (cp,p) iff m f= c}:X ~Wand n f=
p: W x X ~ W as PER maps. Note that here (m, n) is not a pair, but a number produced
by the pairing bijection. We again use the notation lml: X ~ Y for a morphism in L: realized
by m. (The ambiguity in the notations f= and I · I, which are used both for PER and L:, is
always resolved by the context.)

The expansion maps X ~ X x V are realized by expand= (fst, overwrite) where

overwrite· (x',(x,v)) = (x',v).

We will often rely on equations such as the one for overwrite to define a realizer implicitly.
This will be more readable than using .X and projections everywhere, as in

overwrite = .Xy. (snd · y, snd · (fst · y)) .

40

The identity on a E-object X is given by the realizer wid= (pid,jst). For composition,
suppose l(f,g)I:X --+ Y and I(J',g')I:Y --+ Z. A realizer (r,q} for their composite is as
follows: r is pcomp · f' · f, and

q·(z,x} = g'·(z,g·(f'·z,x})

From this definition it is clear that there is a number wcomp such that wcomp · h · i realizes the
composite lhl; Iii in E. Notice that expansions, composition and identities are given uniformly,
by a single realizer for each.

10.2 Realizable EU.nctors and Natural Transformations

A functor F from E to PER is realizable iff there is a number n such that

'Vh E Mor(E) 'Vm. if m f= h then n · m f= F(h).

We say that n realizes F. There is no condition on how F acts on objects. As F is a functor
it preserves identities and composites. Notice, however, that the explicitly-specified realizers
for identities and composites need not be preserved. For example, m · wid = pid need not
hold; m ·wid must simply be a realizer for the identity on F(A), for each PER A.

Suppose F and G are realizable functors from E to PER. A natural transformation
'f/= F ...:..;. G is realizable iff for some n,

'VX E Ob(E). n f= 'f/ X.

For a natural transformation to be realizable all of its components must be given by the
same code. Realizable natural transformations compose in the usual componentwise (verti­
cal) fashion. We let PERE denote this category of realizable functors and realizable natural
transformations.

Proposition 12 (Freyd-Robinson-Rosolini)

PERI: is Cartesian closed.

Proof: E and PER, together with their notions of realizability, can be viewed as internal
categories in the category of w-sets, or the ••-separated presheaves in the effective topos. As
such a category, PER is "complete" and Cartesian closed (see [50] for a discussion of various
notions of completeness). By the result of [7] this means that the internal category offunctors
E -- PER is (internally) Cartesian closed, which implies that the external category PERE
of realizable functors is Cartesian closed. •

The exponential in this functor category can be described using the appropriate analogues
of Yoneda functors. If X andY are E objects, then the PER hxy is such that m[hXY]n iff
lml = lnl: X --+ Y as E maps. The realizer for the morphism part of hx (-)is

>.f. >.g. wcomp · g · f

IfF and G are realizable functors, then the PER GF (X) is

m[GF(X)]n iff lml = lnl:hx x F---=-+- G.

41

A realizer for the morphism part of GF is h where

h·f·m·(a,b) = m·((wcomp·f·a),b).

The semantics of base types goes as follows. (We assume that there is a PER [8] associated
with each data type 8.)

For expressions,

[exp[8]]A = A=? [8]

On ~-morphisms, when l(f,g)j:A ~ B, we want

[exp[8]] I(J,g)j: (A=?[8]) ~ (B=?[8])

A realizer of this map is m such that

m. e. 8 = e. (f. s).

A realizer for [exp[8]]: Mar(~) ---+ Mor(PER) is then).h >.e >.s. e · (fst · h · s). To see that this is
a good definition, notice that, from the relation-preservation property of PER maps, if s[B]s',
e[A =? N]e' and f[BxA =? B]f', then e · (J · s) = e' · (f' · s'). Notice also that this realizer is
completely independent of 8. It is as if the realizer were parametrically polymorphic in 8.

For commands:

[comm]A = A=?A

and a realizer for

[comm] I(J,g)j: (A=? A)~ (B=?B)

is m such that
m·c·s = g·(s,c·(f·s)).

For variables,
[var[8]]A = ([8]=?[comm]A) x [exp[8]]A

and
[var[8]] I(J, g)j = { (id[b] =? ([comm] I(J, g)j), ([exp[8]] I(J, g)j)}

where we are using=? on morphisms in the usual way and { ·, ·} is the pairing assiciated with
the Cartesian structure of PER; the required realizer should be evident.

Procedure types are defined using the exponential in PERl:: [0 ~ 0'] = [O'][e]_
These definitions of types are almost exactly as in [33]. The semantics of terms is also

essentially similar. We illustrate by defining the semantics of new. First we define the
standard local variable locvar.

We need a realizer ace for the acceptor part of a local variable. It is given by

ace· n · (s, m) = (s, n)

The number (s, m) is thought of as a state, where s is the non-local part of the stack.

42

The expression part of a local variable should map (s, m) to m, so it is simply snd. We
then define

locvar = (ace, snd) .

Notice that locvar e dom([var]X x Y), for any :E-objects X andY. The standard local variable
is "uniformly given" for all worlds.

For new6, we need a realizable natural transformation [var[6]-+ comm]....:.. [comm]. Its
realizer new6 is as follows:

new6 • p · s = fst · (p · (expand, locvar) · (s, 6))

Once again, 6 is a standard initial value for variables of type 6. We could, of course, do a.wa.y
with this standard value by accepting the initialization as an argument to a new block. Then
the realizer for new would be independent of 6 altogether.

10.3 Naturality and the Groupoid Interpretation

Our aim is to obtain results analogous to the Naturality Theorem and Representation Theo­
rem, but using uniform realizability in PERs in place of Reynolds parametricity. This will be
done in the context of the groupoid interpretation of polymorphism from [7, 36].

In the usual Maggi-Hyland interpretation of polymorphism, a type with, say, one free
type variable is interpreted as (internally) a function F: Ob(C) --+ Ob(C) where C is a.n
internal category and the V quantifier is interpreted as an internal product. In the case that
Cis PER, the product VF is the intersection nxeOb(PER) F(X). The groupoid interpretation
modifies this by interpreting a type as a functor F: ciso --+ C, where C is the groupoid of
isomorphisms in C. Then VF is taken to be a limit of the functor F. In the case of PER,
the groupoid interpretation of VF can be calculated as follows: m[VF]n iff m[nx F(X)]n and
(! · i · m)[F(Y)](J · j · n) whenever Iii = Iii: X--+ Y is a.n isomorphism and f is a realizer for
F.

We will continue to work externally. One point that should be noted, however, is that by
PERiso we actually mean the category of isomorphism pairs from PER. This is needed to
allow effective computation of inverses.

Lemma 13 (Expansion Factorization for PER)

Every E-morphism (</>, p): W --+ X can be factored into an expansion followed by an isomor­

phism W ~ W x Y ~ X. Furthermore, Y can always be taken to be a super-per of X, and
realizers for i and its inverse can be effectively calculated from a realizer for (¢, p).

Proof: Suppose I(!, g) I: W --+X. Define the PER Y by

Notice that X is a. sub-per of Y. The isomorphism i is coded by (f',g') where

f' .\x. (! · x,x)
g' pcomp · g · fst

43

Clearly, f' and g' are obtained effectively from f and g and the inverse of j(f',g')l is

(g, pcomp · f' · fst)

That these maps have the required properties can be shown straightforwardly using the the
definition of Y and the diagrammatic conditions on maps in E. •

We can then show that, for transformations into a base type, naturality on all maps is
assured if we assume naturality with respect to isomorphisms only.

Theorem 14 (Naturality for PER)

Suppose A: E- PER is a realizable functor and jnj: A(-) - [,8](-) is natural with respect to
isomorphisms in E. Then lnl is natural on all maps in E.

Proof: As any E-map factors into an expansion followed by an isomorphism, the result will
follow if we can show

A(W) _ ____,l__,ni __ [,B] (W)

A(jexpandl) 1 1 [,B](jexpandl)

A(W x X) lnl [,B](W x X)

We will give the proof for f3 = comm.
Consider any x E dom(X), and let R., be the PER with domain {x}. Then

jexpandj:W- W x R.,

is an isomorphism in E, and the assumption of naturality on isomorphisms implies that (n ·
(h ·expand· at)· (w1 , x))[W x R.,]((n · a2 • w2), x) when a1[A(X)]a2 and wi[W]w2 , where his
a realizer for A. If the PER X is non-empty, we have R, ~ X and, since expand also realizes
the expansion W - W x X,

(n · (p · expand· a I)· (w1 , x))[W x X]((n · a2 • w2), x)

as required. If X is the empty PER, then commutativity is assured trivially. •
We are now ready to relate suitably uncurried function types to the groupoid interpretation

of polymorphism. First, note that there is an obvious embedding functor E: PERiso - E. It
is the identity on objects, and on morphisms takes an isomorphism pair j(i,j)j: X - W in
PERiso to the map j(j, (pcomp · fst · i))j. The requirement that a morphism in PERiso consist
of both an isomorphism and its inverse is important here for the functor E to be realizable.
Composing with E then takes a functor E - PER to PERiso - PER.

For F: PERiso- PER and X a PER, let F(X x -) be the (realizable) functor that takes
Y to F(X x Y) and an isomorphism ito F(X xi).

Theorem 15 (Representation for PER)

Suppose A: E- PER is a realizable functor. Then ([f3]A)W is isomorphic to

v(((E; A):::} (E; [f3])){W x -)),

where \f is as in the groupoid interpretation and (-) =? (-) is the evident bifunctor

PERiso x PERiso - PER.

44

Proof: The only non-trivial part of the proof is to set up the isomorphism from the PER

v(((E; A) => (E; [;J]))(W X-)) to ([;J]A)W. Let hA amd h/3 be realizers for A and [;3].
Recall from Lemma 13 that, given a realizer r for a map W -+ X in :E, we can effectively

calculate a realizer r; for i in the factorization W ~ W x Y _i__. X together with a realizer
ri 1 for its inverse iso. (Recall also from the proof of 13 that the calculation of r; and ri 1 1s
independent of W, X, and Y.) The isomorphism that we want is realized by j such that

j · m · (r, a) = h13 · r; · (m ·(expand, (hA · r;- 1 ·a)))

Lemma 13 and Theorem 14 can then be used to show that j codes a well-defined map and
that it is an isomorphism whose inverse is realized by k where k · p ·a = p ·(expand, a). •

Using known facts about PER models ([13, 6]) we immediately obtain that, for example,
[comm-+ comm]l is isomorphic to the PER N that relates each natural number to itself.

We do not know if this theorem goes through for the Maggi-Hyland interpretation of
polymorphism with PERs. It does whenever A is a product of Algol base types, but what
happens at higher-order Algol-definable types is not clear to us.

If we try to generalize the result by allowing [;J] to be an arbitrary realizable functor then
we run into the same problem as in the relational model. Specifically, if

m·n·((f,g),c)·s = g·(f·s,c·s)

then lml: 1 (-) -+ [comm-+ comm](-) is natural on isomorphisms, but not on all maps. It is
interesting to compare this to the result of Freyd, Robinson and Rosolini [6]. They show that

any realizable natural transformation between realizable functors PERiso __!____. PER ~ PER

and PERiso ~ PER __!!____. PER, where I is the embedding, determines a natural transforma­
tion between F and G. Our counterexample simply shows that the analogous property does

. E []
not hold for composites PER150 --+ E --+ PER.

We conclude the section with an example of reasoning about local variables using PERs.
Recall the abstract "switch" from the end of Section 5

begin
boolean z;
procedure flick; z :=true;
boolean procedure on; on := z;
z :=false;
?(flick, on)

end

begin
integer z;
procedure flick; z := z + 1;
boolean procedure on; on := z 2': 1;
z := 0;
?(flick, on)

end

Let 2 be a PER of booleans: its equivalence classes are {0}, regarded as false, and {1},
regarded as true. By the semantics of new and the Representation Theorem for PERs, we
can show the following equivalence of polymorphic functions:

fst (p[N]((id x .Xn. n + 1), .Xs. snd(s) ~ 1) (s, 0))
_ fst (p[2]((id x .Xn.l), .Xs. snd(s) = 1) (s, 0))

for p: \11. (a x 1 -+ a x 1) x (a x 1 -+ 2) -+ a x 1 -+ a xI)· Here, ~ 1 and = 1 are the
obvious functions that return 0 or 1 depending on the values of their arguments.

45

To reason about these functions we consider a number of realizers. Let flickl be such that
flickl·(w, n) = (w, n+1). Similarly, flick2·(w, n) = (w, 1), onl·(w, n) = if n ~ 1 then 1 else 0
and on2 · (w, n) = if n = 1 then 1 else 0. If m is a realizer for p then

m · (flickl, on1) E dom(W x N =} W x N)

and
m · (flick2, on2) E dom(W x 2 =} W x 2).

Consider the PER N+ that relates 0 to itself and all positive numbers to one another. Then
flickl[W x N+ =} W x N+]fiick2 and onl[W x N+ =} 2]on2. Since

mE dom((W x N+ =} W x N+) x (W x N+ =} 2) =} W x N+ =} W x N+))

we may conclude that

(m · (flick1, on1)) [w x N+ =} W x N+] (m · (flick2, on2))

This means that

fst . (m. (flick1, onl) . (wl, 0)) [w] fst . (m. (flick2, on2) . (w2, 0))

whenever w 1 [W]w2 , so the results are "equal" (in the same W-equivalence class), which is
what we wanted to show.

The pertinent aspects of PERs that we have used here are that the same number realizes
instantiations of p at different types, and that realizers in instantiations 2 and N for different
arguments to p are "equivalent" in the PER N+. All of the examples from Section 5 can be
validated using similar reasoning.

11 Conclusion

In this work we have argued that the phenomenon of local state is intimately linked to Stra­
chey's notion of parametric polymorphism, and we have shown that reasoning about local
variables often amounts to proving properties of polymorphic functions. The straightforward
treatment of a number of test examples, and representations of first-order types obtained from
parametricity, lend a measure of support to our position. However, as is the case with models
of polymorphism, little is known about the semantics at higher types, and we do not know if
full abstraction can be achieved using our methods.

No previous model of local variables correctly handles all of the test equivalences that
we have demonstrated here. However, Sieber [53] (building on the earlier paper [24]) has
recently constructed a model which also treats all of them correctly. Sieber's model is similar
in many respects to our relational-parametricity model: it also is based on functors and logical
relations; however, the exact connection between the models is not clear to us. Firstly, Sieber's
approach is tightly tied to locations. Our approach can also be applied with a location-oriented
semantics (as we did in the preliminary version (32]), but a location-free semantics is much
cleaner, as predicted in (47]. A more substantive difference has to do with identity relations.
Sieber allows for non-identity relations on the set of natural numbers; this ties up with the

46

treatment of sequentiality in [52]. And there is also some question concerning the respective
roles of identities in treating function types.

Our identification of parametricity as the central notion connected to locality provides, in
our opinion, a sounder conceptual basis for explaining why and how this form of uniformity
arises in local-variable semantics. In the Sieber and Meyer-Sieber work, logical relations appear
primarily as an ad hoc method of cutting down a model. The fact that many of the subtleties
in local-variable semantics involve the form of data abstraction that can be achieved with
procedures and local variables gives a fairly coherent explanation as to why parametricity and
logical relations should be relevant. And, as we have seen, reasoning about local variables
often amounts to proving properties of polymorphic functions. The PER model serves to
further underscore our position.

But, independently of this, we would like to acknowledge the influence of [24] on this work.
For one, contemplation of their equivalences-which incidentally are primarily responsible for
a wider understanding of the subtleties involved in local-variable semantics-played a part
in leading us to propose parametricity as a central theme. For another, their use of functors
and logical relations certainly had an influence, albeit indirectly, on our development of the
relational-parametricity model.

Honsell, Mason, Smith and Talcott [11] have developed a logic for reasoning about state
based on operational, rather than denotational, semantics; see also the earlier paper [23].
Once again, we feel that the conceptual principles underlying their formal rules for reasoning
about local state are not as clear as, and lack the coherence of, our parametricity-locality
connection. Their logic appears to be quite powerful, however, and many of the subtle local­
variable equivalences can be proven in the logic. It would be interesting to see if a suitable
representation-independence property for local state could be derived in their logic, or if such
a property could be formulated in a way that could be added to their reasoning framework.

We have used the framework of reflexive graphs mainly to examine the specific structure
of our model, but it may have more general interest. Reflexive graphs could conceivably be
of use in studying the connection between relational parametricity and naturality in a more
general context, or in clarifying the mathematical significance of using diagonal relations as
"identities." It may be that our Cartesian closure result can be considered as an instance of
a reflexive-graph version of the usual result that the functor category ex is Cartesian closed
whenever Cis Cartesian closed and complete (the results of [7] could be relevant here). Similar
kinds of structure have been used by Pitts [39] in his study of relations and recursive domain
equations, and by Pitts and Stark [38, 37] in their study of dynamic allocation. Dynamic
allocation poses challenging problems beyond those considered here, where we have considered
variable declarations that obey a stack discipline. (Some examples from [38] suggest that
parametricity, by itself, might not be sufficient for understanding dynamic allocation.)

The problem of single threading is deserving of further attention. It is interesting that
most work on the semantics of state, including that of the authors, has concentrated on local
variables. In our opinion, the single-threaded nature of state is at least as fundamental an issue
as the nature of local variables. In this paper, the main aim was to examine the phenomenon
of locality, and we feel that it is reasonable to study this in isolation from single threading.
However, ideally a semantics of state should exclude the kind of state backtracking found in
the block expression.

(A. Meyer has pointed out that the "single threading" terminology can be misleading. The

47

issue does not concern single versus multiple threads of execution, but rather "backtracking
within a single thread." Since the term "single threading" is now used extensively in the
functional programming community, we continue to use it here to avoid needless terminological
differences. The reader should be warned, however, of the possible confusion that may arise
if one thinks of the more common programming usage of the term "thread.")

A simple equivalence which illustrates the problem is the following:

if x = 0 then f(O) else 1 if x = 0 then f(x) else 1.

This equivalence fails in our model because of the phenomenon of temporary side effects; an
f that distinguishes these terms is)..y: exp[int]. doint x := 3 result y.

This particular equivalence is given only to illustrate the problem, and is not itself a
serious challenge for semantics: we have known for some time how this and similar examples
of temporary side-effect can be eliminated. One method is to use the state-set restrictions
of [58]. Another, which is somewhat less "intensional," is to interpret a function type for
expressions so that the state argument appears only at the outermost level; i.e., we would
define

[exp[8]- exp[o']]W = W- ([8] - [8'])

(this is as in [8]). But these must be regarded as limited partial solutions. What we do not
have is a general semantic explanation of single threading that encompasses such special cases.

The first thing that comes to mind when considering single threading is to try and apply
ideas from linear logic; however, naive attempts we have made along these lines have failed.
One difficulty is that linearity captures only one aspect of state: that a state change destroys
the old state. It does not capture the intuition that there may be multiple readers of a variable
in a context where the variable is not assigned to. A more serious difficulty is that an Algol
program is single-threaded only in the state, not in phrase types, and it is not obvious how
to reconcile this with the interpretation of procedure types. A less naive use of linear logic,
which involves non-trivial extensions to the basic framework, appears in preliminary work of
Reddy [42]. It will be interesting to see if the single-threaded nature of state can be made
precise in this setting. (Reddy's semantics also appears to handle local variables well.)

One of the problems we faced in this work was that parametricity is a concept whose
rigourous formulation is still undergoing development, e.g. [59, 21, 7, 41]. We illustrated
our ideas with two of the more appealing approaches, those based on PERs and logical re­
lations, but it may be expected that our understanding of locality will improve with that of
parametricity (or possibly vice versa).

An interesting possibility might be to bypass models altogether by examining a syntactic
translation from (a recursion-free dialect of) Algol into the polymorphic A-calculus. Such a
translation is implicit in, or can easily be obtained from, the category-free presentation of
our semantics (consider especially the PER model). One could ask which Poly-A theory is
generated by this translation, where we equate all Poly-A terms that are the translations
of observationally equivalent Algol terms (and close up under the equational rules of the
polymorphic calculus). A related question is whether there is a Poly-A theory for which this
translation is fully abstract (in that equivalence is preserved and reflected); we conjecture that
the maximum consistent Poly-A theory of Maggi and Statman [28] is one such example. One
can also ask whether there is a unique such theory.

48

We do not know if there is there is any difference between the equational theories generated
by our PER and relational-parametricity models; this is of course related to outstanding ques­
tions about the PER model of the polymorphic A-calculus. Nevertheless, there are advantages
to each model.

In the case of PERs the model construction is smoother in some respects that the relational
one: it is simply a re-casting of the ideas of [47, 33] in a realizability setting. Once the decision
is made to work with PERs it is quite obvious how to proceed. We work with a category of
"realizable" functors PERl: forE a suitable version of Oles's category of store shapes. Certain
properties, like Cartesian closure, are then immediate from known results [7]. In contrast, a
proper categorical understanding of the relational model required considerably more work, the
framework itself (of reflexive graphs) not being a priori obvious.

On the other hand, the PER model can be criticized for its reliance on an underlying model
of the untyped A-calculus; after all, there is nothing impredicative about Algol! In this respect,
the relational model, which is completely predicative, is more satisfactory. Furthermore,
the relational model provides a very direct codification of common informal techniques for
reasoning about data abstraction in imperative languages.

Of course, the corresponding advantage of the PER-based model is that it extends to an
interpretation of a polymorphic variant of Algol. A direction for future work would be to give
a model for such a language in which data abstraction using local variables is combined with
that obtained from user-defined types. The design and semantics of such a language is not as
straightforward as it may seem. There are subtleties in interpreting polymorphic conditionals,
due to the state dependence of the boolean type; this is related to problems discussed in [56].
We expect that quantifiers would have to range over appropriate state-dependent objects.
Also, as mentioned in [48], close attention should be paid to the distinction between data
types and phrase types. For example, the assignment operation should be thought of as a
parametric polymorphic function, for polymorphism over data types, while, e.g., a fixed-point
operator should be parametrically polymorphic over phrase types.

Acknowledgements

Some of this research was carried out at the Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh. A preliminary report on some of
this work appeared as [32]. The realization that parametricity implies naturality in certain
circumstances followed from a conversation with John Reynolds. We are grateful to Andy
Pitts, Edmund Robinson, John Power and Barry Jay for advice on categorical matters, and
to Benli Pierce, Phil Wadler and Qingming Ma for comments. John Reynolds's macros were
used for diagrams.

References

[1] S. Abramsky and T. P. Jensen. A relational approach to strictness analysis for higher­
order polymorphic functions. In Conf. Record 18th ACM Symp. on Principles of Pro­
gramming Languages, pages 49-54, Orlando, Florida, 1991. ACM, New York.

49

[2] R. M. Amadio. Recursion over realizability structures. Information and Computation,
91:55-85, 1989.

[3] M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall Interna­
tional, London, 1990.

[4] W. Cook. Object-oriented programming versus abstract data types. In J. W. de Bakker
et al., editors, Foundations of Object-Oriented Languages, volume 489 of Lecture Notes
in Computer Science, pages 151-178. Springer-Verlag, Berlin, 1991.

[5] P. J. Freyd, P. Mulry, G. Rosolini, and D. S. Scott. Extensional PERs. In LICS [18],
pages 346-354.

[6] P. J. Freyd, E. P. Robinson, and G. Rosolini. Dinaturality for free. In M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Sci­
ence, volume 177 of London Mathematical Society Lecture Note Series, pages 107-118,
Cambridge, England, 1992. Cambridge University Press.

[7] P. J. Freyd, E. P. Robinson, and G. Rosolini. Functorial parametricity. In LICS [19],
pages 444-452.

[8] A. Goerdt. A Hoare calculus for functions defined by recursion on higher types. In
R. Parikh, editor, Logics of Programs 1985, volume 193 of Lecture Notes in Computer
Science, pages 106-117, Brooklyn, N.Y., 1985. Springer-Verlag, Berlin.

[9] D. Gries, editor. Programming Methodology, A Collection of Articles by IFIP WG 2.3.
Springer-Verlag, New York, 1978.

[10] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271-281,
1972. Reprinted in [9], pages 269-281.

[11] F. Hansell, I. Mason, S. Smith, and C. Talcott. A variable-typed logic of effects. Submitted
for publication.

[12] J. M. E. Hyland. A small complete category. Annals of Pure and Applied Logic, 40:135-
165, 1988.

[13] J. M. E. Hyland, E. P. Robinson, and G. Rosolini. Algebraic types in PER models. In
M. Main et al., editors, Mathematical Foundations of Programming Semantics, volume
442 of Lecture Notes in Computer Science, pages 333-350, Berlin, 1989. Springer-Verlag.
Proceedings of the 1989 Conference.

[14] P. T. Johnstone. Affine categories and naturally Mal'cev categories. Journal of Pure and
Applied Algebra, 61:251-256, 1989.

[15] G. M. Kelly and R. H. Street. Review of the basic elements of 2-categories. In G. M. Kelly,
editor, Category Seminar: Proceedings Sydney Category Theory Seminar, 1972/1973,
volume 420 of Lecture Notes in Mathematics, pages 75-103. Springer-Verlag, Berlin, 197 4.

[16] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic. Cambridge
University Press, Cambridge, England, 1986.

50

[17] F. W. Lawvere. Qualitative distinctions between some toposes of generalized graphs. In
J. W. Gray and A. Scedrov, editors, Categories in Computer Science and Logic, volume 92
of Contemporary Mathematics, pages 261-300. American Mathematical Society, 1989.

[18] Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, Philadelphia,
PA, 1990. IEEE Computer Society Press, Los Alamitos, California.

[19] Proceedings, 7th Annual IEEE Symposium on Logic in Computer Science, Santa Cruz,
California, 1992. IEEE Computer Society Press, Los Alamitos, California.

[20] G. Longo and E. Maggi. Constructive natural deduction and its "w-set" interpretation.
Mathematical Structures in Computer Science, 1(2), 1991.

[21] QingMing Ma and J. C. Reynolds. Types, abstraction, and parametric polymorphism,
part 2. In S. Brookes et al., editors, Mathematical Foundations of Programming Se­
mantics, volume 598 of Lecture Notes in Computer Science, pages 1-40. Springer-Verlag,
Berlin, 1992. Proceedings of the 1991 Conference.

[22] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, New York,
1971.

[23] I. A. Mason and C. L. Talcott. References, local variables, and operational reasoning. In
LICS [19], pages 186-197.

[24] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables: prelimi­
nary report. In Conf. Record 15th A CM Symp. on Principles of Programming Languages,
pages 191-203. ACM, New York, 1988.

[25] J. C. Mitchell. Representation independence and data abstraction. In Conf. Record 13th
ACM Symp. on Principles of Programming Languages, pages 263-276, St. Petersburg,
Florida, 1986. ACM, New York.

[26] J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 8, pages 365-458. Elsevier,
Amsterdam, and The MIT Press, Cambridge, Mass., 1990.

[27] J. C. Mitchell and A. Scedrov. Sconing, relators, and parametricity. Unpublished draft,
1993.

[28] E. Maggi. The Partial Lambda Calculus. Ph.D. thesis, University of Edinburgh, 1988.

[29] P. Naur, J. W. Backus, et al. Revised report on the algorithmic language ALGOL 60.
Comm. ACM, 6(1):1-17, 1963.

[30] P. W. O'Hearn and R. D. Tennent. Semantical analysis of specification logic, part 2.
Technical Report 91-304, Department of Computing and Information Science, Queen's
University, Kingston, Canada, 1991. To appear in revised form in Information and Com­
putation.

51

[31) P. W. O'Hearn and R. D. Tennent. Semantics of local variables. In M.P. Fourman, P. T.
Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science, vol­
ume 177 of London Mathematical Society Lecture Note Series, pages 217-238. Cambridge
University Press, Cambridge, England, 1992.

[32) P. W. O'Hearn and R. D. Tennent. Relational parametricity and local variables. In
Conf. Record 20th ACM Symp. on Principles of Programming Languages, Charleston,
South Carolina, 1993. ACM, New York.

[33] F. J. Oles. A Category- Theoretic Approach to the Semantics of Programming Languages.
Ph.D. thesis, Syracuse University, Syracuse, N.Y., 1982.

[34) F. J. Oles. Type algebras, functor categories and block structure. In M. Nivat and J. C.
Reynolds, editors, Algebraic Methods in Semantics, pages 543-573. Cambridge University
Press, Cambridge, England, 1985.

[35) W. Phoa. Effective domains and intrinsic structure. In LICS [18).

[36) W. Phoa. Two results on set-theoretic polymorphism. In D. H. Pitt et al., editors, Cat­
egory Theory- and Computer Science, volume 530 of Lecture Notes in Computer Science,
pages 219-235, Paris, France, September 1991. Springer-Verlag, Berlin.

[37) A. Pitts and I. Stark. Observable properties of higher-order functions that dynamically
create local names, or: What's new? In Proc. International Symp. on Math. Foundations
of Comp. Sci., LNCS, Vol??, pages??-?? Springer-Verlag, 1993.

[38] A. Pitts and I. Stark. On the observable properties of higher-order functions that dy­
namically create local names (preliminary report). In SIPL [54), pages 31-45.

[39] A. M. Pitts. Relational properties of recursively defined domains. In Proceedings, 8th
Annual IEEE Symposium on Logic in Computer Science, pages 86-97, Montreal, Canada,
1993. IEEE Computer Society Press, Los Alamitos, California.

[40) G. D. Plotkin. Lambda-definability in the full type hierarchy. In J. P. Seldin and J. R.
Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and
Formalism, pages 363-373. Academic Press, 1980.

[41) G. D. Plotkin and M. Abadi. A logic for parametric polymorphism. In Typed Lambda
Calculi and Applications, volume 664 of Lect. Notes in Computer Sci., pages 361-375.
Springer-Verlag, 1993.

[42) U.S. Reddy. Global state considered unnecessary: semantics of interference-free imper­
ative programming. In SIPL [54), pages 120-135.

[43] J. C. Reynolds. Towards a theory of type structure, volume 19 of Lecture Notes in Com­
puter Science. Springer-Verlag, Berlin, 197 4.

[44) J. C. Reynolds. User-defined types and procedural data structures as complementary
approaches to data abstraction. In S. A. Schuman, editor, New Advances in Algorith­
mic Languages 1975, pages 157-168. Inst. de Reserche d'Informatique et d'Automatique,
Rocquencourt, France, 1975. Reprinted in [9], pages 309-317.

52

[45) J. C. Reynolds. Syntactic control of interference. In Conf. Record 5th ACM Symp. on
Principles of Programming Languages, pages 39-46, Tucson, Arizona, 1978. ACM, New
York.

[46) J. C. Reynolds. The Craft of Programming. Prentice-Hall International, London, 1981.

[47) J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors,
Algorithmic Languages, pages 345-372. North-Holland, Amsterdam, 1981.

[48) J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason,
editor, Information Processing 83, pages 513-523. North Holland, Amsterdam, 1983.

[49) J. C. Reynolds and G. D. Plotkin. On functors expressible in the polymorphic typed
lambda calculus. Technical Report CMU-CS-90-147, Carnegie Mellon University, School
of Computer Science, 1990. To appear in Information and Computation.

[50) E. P. Robinson. How complete is PER? In Proceedings, Fourth Annual Symposium
on Logic in Computer Science, pages 106-111, Pacific Grove, California, 1989. IEEE
Computer Society Press.

[51) D. A. Schmidt. Detecting global variables in denotational specifications. ACM TOP LAS,
7:299-310, 1985.

[52) K. Sieber. Reasoning about sequential functions via logical relations. In M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Sci­
ence, volume 177 of London Mathematical Society Lecture Note Series, pages 258-269.
Cambridge University Press, Cambridge, England, 1992.

[53) K. Sieber. New steps towards full abstraction for local variables. In SIPL [54), pages
88-100.

[54) ACM SIGPLAN Workshop on State in Programming Languages, Copenhagen, Denmark,
June 12, 1993. Technical report YALEU /DCS /RR-968, Department of Computer Science,
Yale University.

[55) C. Strachey. Fundamental Concepts in Programming Languages. Unpublished lecture
notes, International Summer School in Computer Programming, Copenhagen, August
1967.

[56) R. D. Tennent. Elementary data structures in Algol-like languages. Science of Computer
Programming, 13:73-110, 1989.

[57) R. D. Tennent. Semantical analysis of specification logic. Information and Computation,
85(2):135-162, 1990.

[58) R. D. Tennent. Semantics of Programming Languages. Prentice-Hall International, 1991.

[59) P. Wadler. Theorems for free! In Functional Programming Languages and Computer
Architecture, pages 347-359, 4th International Symposium, Imperial College, London,
September 1989. ACM, New York.

53

	Parametricity and Local Variables
	Recommended Citation

	SU-CIS-93-30_001c
	SU-CIS-93-30_002c
	SU-CIS-93-30_003c
	SU-CIS-93-30_004c
	SU-CIS-93-30_005c
	SU-CIS-93-30_006c
	SU-CIS-93-30_007c
	SU-CIS-93-30_008c
	SU-CIS-93-30_009c
	SU-CIS-93-30_010c
	SU-CIS-93-30_011c
	SU-CIS-93-30_012c
	SU-CIS-93-30_013c
	SU-CIS-93-30_014c
	SU-CIS-93-30_015c
	SU-CIS-93-30_016c
	SU-CIS-93-30_017c
	SU-CIS-93-30_018c
	SU-CIS-93-30_019c
	SU-CIS-93-30_020c
	SU-CIS-93-30_021c
	SU-CIS-93-30_022c
	SU-CIS-93-30_023c
	SU-CIS-93-30_024c
	SU-CIS-93-30_025c
	SU-CIS-93-30_026c
	SU-CIS-93-30_027c
	SU-CIS-93-30_028c
	SU-CIS-93-30_029c
	SU-CIS-93-30_030c
	SU-CIS-93-30_031c
	SU-CIS-93-30_032c
	SU-CIS-93-30_033c
	SU-CIS-93-30_034c
	SU-CIS-93-30_035c
	SU-CIS-93-30_036c
	SU-CIS-93-30_037c
	SU-CIS-93-30_038c
	SU-CIS-93-30_039c
	SU-CIS-93-30_040c
	SU-CIS-93-30_041c
	SU-CIS-93-30_042c
	SU-CIS-93-30_043c
	SU-CIS-93-30_044c
	SU-CIS-93-30_045c
	SU-CIS-93-30_046c
	SU-CIS-93-30_047c
	SU-CIS-93-30_048c
	SU-CIS-93-30_049c
	SU-CIS-93-30_050c
	SU-CIS-93-30_051c
	SU-CIS-93-30_052c
	SU-CIS-93-30_053c
	SU-CIS-93-30_054c

