
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

10-1993 

Parametricity and Local Variables Parametricity and Local Variables 

Peter W. O'Hearn 
Syracuse University 

R. D. Tennent 
Queen's University - Kingston, Ontario 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
O'Hearn, Peter W. and Tennent, R. D., "Parametricity and Local Variables" (1993). Electrical Engineering 
and Computer Science - Technical Reports. 158. 
https://surface.syr.edu/eecs_techreports/158 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/158?utm_source=surface.syr.edu%2Feecs_techreports%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


SU-CIS-93-30 

Parametricity and Local Variables 

P. \V. O'Hearn and R. D. Tennent 

October, 1993 

School of Computer and Information Sciencr 
Syracuse Cnirersity 

Suite 4-116. Cfnler for SciEncr and Technoloqy 
SyracuM . .\"etr Yorl.· 1:3244-4100 



Parametricity and Local Variables 

P. W. O'Hearn* 
School of Computer and Information Science 

Syracuse University 
Syracuse, New York, U.S.A. 13244 

ohearn@top.cis.syr.edu 

R. D. Tennent t 
Department of Computing and Information Science 

Queen's University 
Kingston, Ontario, Canada K7L 3N6 

rdt@qucis.queensu.ca 

Abstract 

We propose that the phenomenon of local state may be understood in terms of Stra­
chey's concept of parametric (i.e., uniform) polymorphism. The intuitive basis for our 
proposal is the following analogy: a non-local procedure is independent of locally-declared 
variables in the same way that a parametrically polymorphic function is independent of 
types to which it is instantiated. 

A connection between parametricity and representational abstraction was first sug­
gested by J. C. Reynolds. Reynolds used logical relations to formalize this connection in 
languages with type variables and user-defined types. We use relational parametricity 
to construct a model for an Algol-like language in which interactions between local and 
non-local entities satisfy certain relational criteria. Reasoning about local variables es­
sentially involves proving properties of polymorphic functions. The new model supports 
straightforward validations of all the test equivalences that have been proposed in the 
literature for local-variable semantics, and encompasses standard methods of reasoning 
about data representations. It is not known whether our techniques yield fully abstract 
semantics. A model based on partial equivalence relations on the natural numbers is also 
briefly examined. 

*This author was supported by NSF grant CCR-92110829. 
1This author was supported by an operating grant from the Nat ural Sciences and Engineering Research 

Council of Canada and a research fellowship from the Science and Engineering Research Council of Great 
Britain. 
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1 Introduction 

One of the first things most programmers learn is how to "declare" a new assignable local 
variable, and facilities to support this have been available in programming languages for over 
thirty years [29). It might be thought that there would by now be a satisfactory semantic 
interpretation for so fundamental and apparently elementary a mechanism. But existing 
models are not completely satisfactory [24, 31). The problems arise when block bodies can 
contain calls of non-local procedures, and the difficulty is in defining precisely the sense in 
which non-local entities are "independent" of a locally-declared variable. 

For example, consider the following (Algol 60) block [24]: 

begin 
integer z; 
procedure inc; z := z + 1; 
P(inc) 

end 

Although the unknown non-local procedure P can use its argument to change the value of 
z, this value can never be read, and so the block should be equivalent to P( skip), where 
skip does nothing, for every possible meaning of P. But this equivalence fails in all previous 
denotational models of local variables! 

The reader's reaction to this example might be that it is contrived, and that it has no 
practical significance; after all, who would ever write such a program? But consider the 
following slightly more complicated example: 

begin 
integer z; 
procedure inc; z := z + 1; 
integer procedure val; val:= z; 
z := 0; 
P( inc, val) 

end 

The local variable, the two procedure declarations, and the initialization can be considered 
as constituting the concrete representation of an abstract "counter" object. Procedure P, 
the "client," is passed only the capabilities for incrementing and evaluating the counter, and 
cannot access the counter representation in any other way. A more modern language would 
provide a "sugared" syntax, and one could write something like 

module counter(exports inc, val); 
begin 

integer z; 
invariant z ~ 0; 
procedure inc; z := z + 1; 
integer procedure val; val := z; 
z := 0 

end counter; 

... counter. inc; ... counter. val ... 
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but the unsugared form shows that, even without additional features, the combination of 
local variables and procedures in Algol-like languages supports a form of representational 
abstraction, which is one of the main themes of modern programming methodology. (In fact, 
the same example is used in the Appendix of [45] to make the same point.) See [47, 58] 
for discussion of Algol-like languages, and [44, 4] for comparisons of linguistic approaches to 
representational abstraction. 

To a certain extent, the relevance of representational abstraction to the semantics of local 
variables has already been exploited. The models described in [24, 30] support validation 
of invariance principles often used for reasoning about data representations, as in [10]. For 
example, these models validate the following equivalence: 

begin 
integer z; 
procedure inc; z := z + 1; 
integer procedure val; val:= z; 
z :=0; 
P( inc, val); 
if z ~ 0 then diverge 

end 

diverge 

where diverge is a statement whose execution (in any state) never terminates. Because P 
can be any procedure (of the appropriate type), the equivalence demonstrates that z ~ 0 is 
an invariant of the counter representation; i.e., z ~ 0 is true before and after every call of inc 
from P. 

But there is more to representational abstraction than preservation of this kind of repre­
sentation invariant. Consider the following block, which uses a "non-standard" representation 
of a counter: 

begin 
integer z; 
procedure inc; z := z - 1; 
integer procedure val; val:= -z; 
z := 0; 
P(inc, val) 

end 

This block should be equivalent to the block that uses the "standard" representation. The 
equivalence illustrates the principle of representation independence: one concrete representa­
tion of a data abstraction should be replaceable by another, provided the relevant abstract 
properties are preserved; see, for example, [25]. It is clearly important to be able to validate 
changes of representation; but existing semantic models of local variables almost always fail 
on such equivalences! 

This failure is especially surprising because standard informal methods for demonstrating 
correctness of data representations [10][46, Chapter 5] can easily be adapted to proving such 
equivalences. For our example, consider the relation R between states for the two implementa­
tions such that, if z0 and z1 are the values of the variable z in the standard and non-standard 
implementations, respectively, R holds if and only if -z1 = z0 ~ 0 and all other variables have 
the same values. It can be shown that 
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• R is initially established by executing the two initializations (with identical non-local 
states); 

• executions of (the two implementations of) inc preserveR; and 

• evaluations of (the two implementations of) val in R-related states yield the same result. 

The conclusion is that R holds after execution of the calls toP, and so the blocks have been 
"proved" to have equivalent effects on non-local variables. But, although there is no reason to 
think these methods are invalid, they have never been rigorously verified for a language with 
local-variable declarations! 

This discussion of data abstraction motivates our link with the concept of parametricity, 
introduced by Strachey [55] in the following remarks: 

There seem to be two main classes [of polymorphism], which can be called 
ad hoc polymorphism and parametric polymorphism. 

In ad hoc polymorphism there is no single systematic way of determining the 
type of the result from the type of the arguments. There may be several rules 
of limited extent which reduce the number of cases, but these are themselves 
ad hoc both in scope and content. All the ordinary arithmetic operators and 
functions come into this category. It seems, moreover, that the automatic insertion 
of transfer functions by the compiling system is limited to this class. 

Parametric polymorphism is more regular and may be illustrated by an exam­
ple. Suppose f is a function whose argument is of type a and whose result is of 
type {3 (so that the type off might be written a=> {3), and that Lis a list whose 
elements are all of type a (so that the type of L is a list). We can imagine a 
function, say Map, which applies fin turn to each member of Land makes a list 
of the results. Thus Map[f, L] will produce a {Jlist. We would like Map to work 
on all types of list provided f was a suitable function, so that Map would have to 
be polymorphic. However its polymorphism is of a particularly simple parametric 
type which could be written 

(a ::::> {3, a list) ::::> {Jlist 

where a and {3 stand for any types. 

Although a complete understanding of the ramifications of this notion of parametricity is 
not yet available (cf., [7, 41]), Reynolds [43, 48] has emphasized the close relationship with 
representational abstraction. The idea is that a parametric polymorphic function must work in 
a way that is independent of the types to which it is instantiated. For instance, (in the absence 
of recursion) the only parametric elements of type Va.a ---+a---+ a are the two functions with 
two arguments that return either the first argument or the second argument, respectively. 
On the other hand, a function that would return its first argument when instantiated to a 
function on integers, and its second otherwise, is not parametric because it works differently 
at different types. Intuitively, a parametric function cannot make use of knowledge about the 
types to which it is instantiated, which is to say that type variables are treated "abstractly." 

We propose that the independence of non-local entities and local variables is in essence 
similar to the sense in which a parametric function is independent of the specific types to which 
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it is instantiated. Stated in terms of abstraction, the principle that a non-local procedure 
cannot access a local variable (except through using arguments that access the variable) is 
analogous to the principle that the representation of an abstract type cannot be directly 
accessed by programs that use it (except through the provided operations of the type). We 
will define a semantics for an Algol-like language in which non-local procedures are modeled as 
parametric functions that can be instantiated with pieces of local state. The independence of 
the procedure itself from a local variable will then be explained in terms of the independence 
of a polymorphic function from type arguments, which here play the role of local state. 

The approach to representational abstraction that we will follow is based on the work of 
Reynolds [48], where the technique of "logical" relations [40, 26] was used to give a rigorous 
formulation of abstraction that is appropriate for functional languages with higher-order and 
polymorphic procedures and programmer-defined types. We can illustrate the representation­
independence property provable using logical relations as follows. Suppose 

• 8 is a type expression with (say) one free type variable, and 1r is a typing context, i.e., 
a finite list of types over the same type variable; 

• W0 and W1 are sets, regarded as alternative "representations" of the type variable; 

• [8]W0 is the set of meanings of type 8 when W0 is assigned as the meaning of the type 
variable, and similarly for [8]W1; 

• [1r]W0 is the set of 1r-compatible environments when W0 is assigned as the meaning of 
the type variable, and similarly for [1r]W1; 

• R <;;;; Wo X wl· is any relation on Wo and wl' regarded as relating representations of 
abstract values; 

• [8]R <;;;; [8]W0 x [8]W1 is the relation on 8-meanings "logically" induced by R, and 
similarly for [1r]R <;;;; [1r]W0 x [1r]W1; 

• P is any phrase of type 8 in context 1r; 

• [P]W0 is a function which is the meaning of P when W0 is assigned as the meaning of 
the type variable, and similarly for [P]W1. 

Then it can be proved that ([P]W0 , [P]W1) is a relation-preserving pair offunctions; i.e., for 
all u0 E [1r]Wo and u1 E [1r]W1, 

Intuitively, this says that relations between different representations of a type variable are 
respected by programs that use it. We will refer to this kind of uniformity as relational 
parametricity, after [55] and [48], and portray it diagrammatically as follows: 

[ 1r] Wo ----"'-[ P--"]'--W,-0 -+- [ 8] Wo 

[1r]Rj j[8]R 

[1r]W1 [P]W1 [8]W1 
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Notice that double-headed arrows - are used here for (binary) relations, and that this is 
not a conventional commutative diagram. 

The connection between logical relations and polymorphic functions emphasized by 
Reynolds is that if the above relation-preservation property is to hold in a polymorphic lan­
guage, then values of'v'-types must be constrained so as to satisfy similar relation-preservation 
conditions. In our model for local variables, function types will themselves have a polymorphic 
flavour, and will be constrained by such a parametricity condition. 

Relational parametricity is commonly thought to prescribe necessary properties that para­
metric functions must satisfy. What is less clear is whether, particularly in the binary-relation 
form, it is sufficient to characterize the intuitive concept. Another appealing approach to 
parametricity, possessing a fairly coherent conceptual basis, uses partial equivalence relations 
(PERs); e.g., [20]. In the PER approach, polymorphic types are interpreted as infinitary 
intersections, so that a (realizer for a) polymorphic function is an untyped meaning that is 
type-correct for all instantiations of a type variable. This captures, to a certain (not com­
pletely understood) degree, the intuition that a polymorphic function is given by a uniform 
algorithm. On the other hand, the relational approach captures, to a certain (not completely 
understood) degree, intuitions about representation independence. 

The larger part of our effort in this paper will be directed toward examining the relational 
approach of Reynolds. The semantic model we define will represent quite directly the informal 
reasoning about local variables and data abstraction alluded to above. However, we will also 
briefly outline how PERs can be used to treat variable declarations. A comparison of the two 
models will be given in Section 11. 

Our method of incorporating parametricity builds on the functor-category approach to 
local variables pioneered by Reynolds [47) and Oles [33, 34). In the remainder of this Intro­
duction, we will briefly review the basic elements of this approach, and indicate how relational 
parametricity will enter the picture. (The expository article [31] and textbook [58) contain 
introductions to this approach.) 

The key insight of the Reynolds-Oles work is that, in a language with local-variable decla­
rations, the concept of state is not constant-represented by a single set of states-but rather 
varies as storage variables are allocated and de-allocated. That is, there are different possible 
sets of states depending on the "shape" of the run-time stack; i.e., the number and type of 
variables that have been allocated. 

To account for this, the semantics is parametrized by abstract "store shapes," effectively 
building the variance in the concept of state into the semantics in a way that logically precedes 
any assignment of meanings to phrases. In general, the meaning of a type is not a single do­
main, but a whole family of domains. For example, the type of commands is often interpreted 
as S -+ S _1_, where S is a set of states. But in a language with variable declarations S itself 
varies, and so there is a domain X --+ X _1_ for each possible set X of states. In particular, a 
local-variable declaration changes the set of states from X to X x Y, where Y is the set of 
values the new variable may hold; the Y -valued component of each element of X x Y repre­
sents the new variable. Similarly, if the the domain of command meanings prior to a variable 
declaration is X--+ xl_, then, after declaration, it becomes X X y--+ (X X Y)J..· 

The semantic set-up can be elegantly described using basic concepts of category theory. 
The variance in the concept of state is modeled using a category of "possible worlds." Each 
possible world determines the set of storage states needed to represent the values of currently 
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available variables, and a morphism of worlds "expands" the current state by allocating space 
for additional storage variables (theY -valued component above). This variance in the concept 
of state induces a similar variance into types, which is represented by interpreting types 
as functors from the category of possible worlds to a category of domains and continuous 
functions. Phrases are interpreted as natural transformations of these functors. The naturality 
condition on the meaning of any phrase P is portrayed by the following commutative diagram: 

[ 7l' ]Wo --=-[ P--=]'---W,-0 - [ 0] Wo 

[7r]fl l[O]f 

[1r]W1 [P]W1 [O]W1 

where f: W0 -+ W1 is a morphism of possible worlds, and [0] and [1r] are type and environment 
functors. 

Notice that, in many respects, this is similar to the relational-parametricity picture dis­
cussed earlier. Parametrization by possible worlds is roughly analogous to abstraction on a 
type variable. In fact, if we think of the possible worlds as certain kinds of types, then [P] 
is a family of functions indexed by these types and so is, in a certain sense, polymorphic. It 
is therefore certainly conceivable to require a family of this form to satisfy a parametricity 
constraint. 

This analogy between possible worlds and type variables suggests how relational para­
metricity can be incorporated. We consider binary relations between worlds, regarded as relat­
ing different "representations" of the store shape, and the semantics of types is then arranged 
so that each such relation induces a relation between the meanings of a type at different store 
shapes. The meanings of terms are then families of maps satisfying a relational-parametricity 
constraint. 

The naturality requirements of Reynolds and Oles will not be abandoned. However, to 
make the presentation more accessible, we will begin with a "category-free" description of our 
model. The naturality conditions are implicit in this presentation, but will later be shown to 
be implied by relational parametricity. 

This category-free description has the advantage of being quite simple, and it also puts 
the role of parametricity clearly on display. But a consideration of relevant category-theoretic 
issues is crucial for a deeper understanding of the model. The category-free presentation ap­
pears very ad hoc in some respects; a fully satisfactory justification for some of the definitions 
will come from categorical considerations. Further, while we will show that in certain cir­
cumstances naturality is implied by relational parametricity, it must be emphasized that, in 
general, these are different kinds of uniformity, with neither being stronger than the other. It 
will be seen, in fact, that the connection between these two concepts is somewhat delicate. (In 
Section 9, we show an example where "parametricity implies naturality" is not stable under 
Currying isomorphisms; this, for us, came as a surprise.) 

To study this combination of relational parametricity and naturality, we will define a suit­
able cartesian closed category of "relation-preserving" functors and natural transformations. 
The key technical notion underlying this construction is that of a reflexive graph, which is 
essentially an arbitrary category equipped with assignments of (abstract) "relations" to its 
objects and morphisms. This will be taken up in Sections 7-9. The earlier parts of the paper 
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are devoted to the category-free presentation of the model. 

2 Types 

2.1 Syntax 

Our language is an Algol-like language in the sense of [47]. The language does not include 
jumps or subtypes, but it raises the key issues related to variable allocation. The types are as 
follows: 

8 ::= int I bool · · · 

j3 ::= comm I exp[8] I var[8] 

o ::= f3 I o- f3 

(data types) 

(primitive phrase types) 

(phrase types) 

Data types are the types of values that can be stored, while phrase types consist of meanings 
that can be denoted by identifiers and, more generally, program phrases, but that cannot be 
stored. This distinction allows variable declarations to obey a stack discipline. 

comm is the type of commands. Executing a command causes a state change, but does 
not return a value. var[8] is the type of storage variables that accept 8-typed values. exp[8] 
is the type of expressions that return values of type 8. Expressions are "read only," in that 
they are state dependent but do not cause side effects. So all state changes are concentrated 
in the type comm. In particular, procedures, which are called by-name, can only change the 
state indirectly, when used within a phrase of type comm. 

In procedure types 0 is a non-empty vector of phrase types. This "uncurried" formulation 
of the syntax of procedure types is not essential, but is most amenable to a category-free 
description of the model. 

2.2 Semantics 

We will regard a binary relation R as a triple (W0 , W1 , S) where W0 and W1 are sets (the 
domains of R) and S ~ W0 x W1 (the graph of R). Although we will work exclusively with 
binary relations, our definitions (though not all of our notation) generalize straightforwardly 

Wo 

to n-ary relations for any n. We will use the notations R: W0 +-+ W1 and R! to mean that 

W1 
R is a binary relation with domains W0 and W1 , and w0 [R]w 1 to mean (w0 ,w1 } e graphR. 

If W is any set, 

• ~w:W +-+ W is the diagonal relation on W; i.e., w[~w]w' {:::::::::::} w = w'. 

We use w- X and w X X for the function space and product of sets. If Wo, wl, Xo, and 
X 1 are sets and R:W0 +-+ W1 and S:X0 +-+ X 1 , 

• R X S: Wo X Xo +------+ wl X xl is defined by (wo, Xo}[R X S](wl, xt) {:::::::::::} wa[R]wl and 
xo[S]xl; 
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• R- S: Wo - Xo - wl - xl is defined by fo[R- S]fl -¢:::=:> for all Wo E Wo, 
w1 E W1 , if w0 [R]w1 then / 0 (w0 )[S]/1(wi). We often use the diagrammatic notation 

fo 
Wo-WI 

Rl ls 
XohXl 

to indicate that f 0 [R - S]/1 • Notice that this notation makes the domains of the 
relations, and the domains and codomains of the functions, evident. 

The collection :E of "store shapes" is a set of sets that includes desired data types, such as 
2 = { true,Jalse} and Z = { ... , -2, -1, 0, 1, 2, ... }, and all finite (set) products of these. We 
won't be more specific about :E, except to emphasize that it must be a small collection. For 
each data type 15, we assume a set [/5] in :E, with [int] = Z and [bool] = 2. 

Following [48], we define a "twin" semantics of phrase types, where each 0 determines two 
functions 

[0] : :E --+ Sets 

[0]: rel(:E)--+ rel(Sets). 

Here, Sets stands for the class of sets, rel(Sets) for the class of binary relations between sets, 
and rel(:E) for the set of binary relations between store shapes. The relational component of 
the semantics will be used to enforce parametricity constraints. 

The interpretation of the command type is as follows: 

• for every store shape Win :E, 

[comm]W w-w;and 

• for every R: W0 +-+ W 1 in rel(:E), 

[comm]R R-R. 

For expressions: 

• for every store shape Win :E, 

[exp[/5]]W W- [/5] ;and 

• for every relation R: W0 +-+ W1 in rel(E), 

[exp[I5]]R R- ~[6]· 

For variables: 

• for every store shape W in :E, 

[var[/5]]W = ([15] --+ [comm]W) x [exp[o]]W ; and 
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• for every relation R: W0 - W1 in rel(~), 

[var[8]]R = (~[6] - [comm]R) x [exp[8]]R. 

The two components of a variable allow for, respectively, updating and accessing its contents. 
This "object-oriented" approach to variables is from [47]. 

For vectors if= 81, ... , Bn: 

• for every store shape W in ~' [B]W = [81]W x · · · x [B]W ; and 

• for every R: Wo - wl in rel(~), [if]R = [Bl]R X ••• X [B]R 

Officially, meanings for types [8] and vectors [if] are defined by a simultaneous induction. 
For procedure types one might expect to use a pointwise definition, where [if- ,B]W = 

[if]W - [,B]W, and similarly for the relation part. However, a pointwise definition is not 
appropriate in the present context. The reason is that we think of the sets in ~ as "store 
shapes," which can grow between the point of definition of a procedure and the point of call. 
For example, if the store shape is W when a procedure identifier Pis bound, and Pis called 
after an integer variable is declared, then the shape of the stack for the call will be W x Z, 
not W. 

binding of P · · · begin integer x; · · · P( · · · x · · ·) · · · end 

Thus, a procedure meaning at store shape W must be applicable at an expanded shape W x X, 
where X corresponds to additional variables that have been allocated. This is accounted for 
in [47, 33] by defining a procedure meaning to be a family of functions, indexed by extra 
components X representing pieces of local state that can be added to the stack. We will follow 
the same route here, except that these families of functions will be subject to parametricity 
conditions. 

A procedure type if- ,B is interpreted as follows. 

• For every store shape W in ~' 

[B---+ ,B]W = vx. [if](W X X) - [,B](W X X) ; 

that is, p e [if- ,B]W is a family of functions 

p[-]: [if](W X-) - [,B](W X-) 

indexed by store shapes X, satisfying the following parametricity constraint: for all 
relations R: X 0 - X 1 between store shapes, 

[if](W X Xo) ~p-=--[X_o=-] -[,B](W X X0 ) 

[if](~w x R) 1 1 [,B](~w x R) 

[if](W X Xl) [,B](W X Xl) 
p[X1] 

Function p[X] models the behaviour of the procedure instantiated at the "expanded" 
store shape W x X. 
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• For every relation R: X 0 ~ X 1 in rel('E), p[[O----+- ,B]R] q iff, for all relations S: Y0 ~ Y1 

in rel('E), 

[B](Xo X Yo) _P_o-=--[Yr----'0]=----- [,B](Xo x Yo) 

[O](R X S)t 1 [.B](R X S) 

[B](Xl X YI) [.B](Xl X YI) 
PI[YI] 

Notice how the relational and domain-theoretic semantics become intertwined at this point. 
This is motivated by the use of a relational condition to constrain values of V types in [48]. 
The identity relation Llw plays the same role as the identity relations there. (Of course, the 
foundational difficulties described in [48, 49] do not arise here, because the source collection 
'E, over which indexing is done, is small.) 

2.3 Recursion 

The presentation thus far is for a recursion-free dialect of Algol. Recursion can be dealt 
with by using domains in place of sets, as follows. (We still use sets, or discretely-ordered 
predomains, for the store shapes.) 

If D and E are partially ordered sets and R: D ~ E (i.e., R is a relation on the underlying 
sets), 

• R1.: D 1. ~ E1. is defined by d[R1.]e {::::::::} d = e = .l or d[R]e, where D 1. is obtained 
from D by adding a new least element .l. 

If D and E are directed-complete partially-ordered sets then a relation R: D ~ E is 

• complete, if its graph is a directed-complete subset of the pointwise-ordered product of 
the domains of the relation; and 

• pointed, if D and E are pointed and R relates their least elements. 

The semantics can then be defined by mapping store shapes to domains, and relations on 
store shapes to pointed complete relations on domains. For the command type: 

• for every store shape W in 'E, 

[comm]W W ----+- W 1. and 

• for every R: W0 ~ W1 in rel('E), 

[comm]R = R --? R1.. 

Here, the----+- acts on (pre)domains as the continuous-function space constructor, and on com­
plete relations by producing the evident complete relation on the function spaces. The defi­
nitions of the other base types can be modified in a similar fashion, and procedure types are 
exactly as before, but with the----+- in the definition understood as constructing the continuous­
function space, and the families p[-] ordered component-wise. 

The restriction to complete relations is standard. It is needed for the fixed-point operator 
to satisfy the appropriate parametricity constraints, and also for domain-theoretic structure 
to be respected when using parametricity to constrain procedure types. As the consideration 
of recursion would add little to our discussion of locality, we will for simplicity concentrate on 
the set-theoretic semantics in the remainder of the paper. 
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3 Properties of Types 

3.1 Basic Properties 

We now turn to some basic properties satisfied by this semantics. These are all essentially 
consequences of the polymorphic view of phrase types sketched in the previous section. 

First, as in [48], each [8] preserves identity relations. 

Lemma 1 (Identity Extension) 

For each phrase type 8 and store shape W, [8]~w = ~[e]w. 

Proof: By induction on types. For base types this is immediate. 
We will consider the function type in some detail to indicate how the proofs go. For 0.....,. (3, 

if p E [0 ....... (3]W then, by definition, p [[0 ....... f3]~w ]P iff, for all R: X a - x1' 

[O](W x Xa) ---=..p..:....[X_o=-] -[f3](W x Xa) 

[O](~w x R)! 1 [f3](~w x R) 

[O](W X Xi) [f3](W X X1) 
p[Xl] 

As this is none other than the parametricity constraint on procedure meanings, we may con­
clude that [0.....,. f3]~w contains the diagonal. 

Conversely, if p[[O.....,. f3]~w]q then, for R:X0 ....,. X 1 , 

[O](W x Xa) ---=..P__,_[X.....:.a=-] -[f3](W X Xa) 

[O](~w x R)! 1 [(3](~w x R) 

[O](W X X1) [f3](W X Xi) 
q[Xt] 

In particular, taking R as a diagonal ~x and applying the induction hypothesis (both for 0 
and for (3) gives that p[X]a = q[X]a for all X and a E [B)X, and sop= q. (We are using the 
fact that the identity property can be seen to hold for [8] whenever it holds for each element 
of the vector.) • 

A further related property, emphasized in [7), is that each [8] is functorial on isomorphisms. 
We say that a relation in rel(~) (respectively, rel(Sets)) is an isomorphism iff it is the graph 
of a bijection. (In a domain-theoretic model, we would consider continuous isomorphisms, i.e. 
continuous, order-reflecting bijections) . 

It will be well, for future reference, to have an explicit description of functional isomor­
phisms induced by bijections between store shapes (even though these isomorphisms could 
alternatively be read off from the semantics of types, using a relational isomorphism). If 
f: W - X is a bijection between store shapes then the isomorphism / 8 : [B]W - [B]X is 
defined as follows. 

fcomm 

fexp[b] 

fvar[b] 

fo ...... f3 

J-1- f 
J-1 ....... id[b] 

(id[b] - /cornrn) X fexp[b] 
..\pAY. u- 1 X Y)o; p[Y] ; (!X Y)f3 
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Here we are using the action of exponentiation -+ and product x (in the category of sets) on 
morphisms, and id is an identity. In the last equation, the right-hand side denotes the function 
that takes p E [0-+ ,B]W and a store shape Y to the bottom of the following diagram 

[O](X X Y) ~ [,B](X X Y) 

u-l X Y)er l (f X Y){3 

[O](X X Y)- [,B](X X Y) 

where f0 for vectors is defined in the obvious component-wise way. 

Lemma 2 (Isomorphism Functoriality) 

Each [B] is functorial on isomorphisms. That is, for all isomorphisms R: W ~ X in rel(E), 

1. if R is an isomorphism then so is the induced relation [B]R, and 

2. if R:X ~ Y and S:Y ~ W are isomorphisms, then [B]R; [B]S = [B](R; S) where 
semicolon is relational composition. 

(Preservation of identities is the identity extension lemma.) Furthermore, iff: W -+ X is a 
bijection between store shapes and R 1 : W ~ X is the relation with the same graph as f then 
the relation [B]R1 and the function f 9 have the same graph. 

Proof: First, showing that f 9 is iso follows by a straightforward argument, where the function 
type case is much as in the proof of the identity extension lemma. Second, that [B]R1 and the 
function fe have the same graph can be shown by induction on types, where the function-type 
case follows immediately from the induction hypothesis. It is then not difficult to show that 
(·) 9 preserves identities and composites, when applied to bijections. • 

Of course, relational composition is not preserved for all relations. 
In the following, much use will be made of the canonical unity and associativity isomor­

phisms between store shapes. (Here, 1 is a singleton store shape.) 

unl: W x 1-+ W unr:W-+ W x 1 

assl:W x (X x Y)---+ (W x X) x Y 

assr: (W x X) x Y---+ W x (X x Y). 

These isomorphisms satisfy a special parametricity property. 

Lemma 3 (Canonical-Isomorphism Parametricity) 

If R;: X; ~ Y; are relations between store shapes, fori= 1, 2, 3, then, for all types(}, 

unl[[B](R1 x ~1)-+ [B]R1]unl unr[[B]Rl-+ [B](R1 x ~I)]unr 

ass! [[B](R1 x (R2 x R3)) -+ [B]((R1 x R2) x R3)] ass! 

assr [[B]((R1 x R2) x R3) -+ [B](R1 x (R2 x R3 ))] assr 

Proof: A routine induction on B. • 
Notice that the notation for these canonical isomorphisms does not make the domains and 
codomains explicit. Perhaps we could write, e.g., asslx,x,x3 8 ; however, no ambiguity will 
arise as the relevant information will always be clear from context. 
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3.2 Expansions 

There is further structure in the semantics that derives from the conception of elements of 
E as representing "shapes" of the run-time stack. Specifically, the expansion of store shapes 
caused by variable declarations is accompanied by mappings that convert semantic entities at 
a shape W to any expanded shape W x X. 

If W and X are store shapes, for each type (} we define a function 

expand9 (W,X):[O]W--" [O](W x X) 

This goes by induction on types. 

expandcomm(W,X)c(w,x) (cw ,x) 

expandexp[6] (W, X) e (w, x) e w 

expandvar[c] (W, X) (id[6] --+ expandcomm (W, X)) X ( expandexp[6] (W, X)) 

expand9~-13 (W, X) p Y = assr 8 ; p[X x Y] ; assl,e 

This treatment of expand maps would surely benefit from a dose of category theory. For now 
we will push on and complete the concrete description of the model, leaving the tidying up of 
categorical matters to Sections 7-9. 

There is a special uniformity property that the expansion functions satisfy. It states that 
expansions preserve relations on non-local states, and also produce meanings at expanded 
shapes that satisfy all relations on the local part of a store shape. 

Lemma 4 (Expansion Parametricity) 

If R: W 0 - W1 and S: X 0 - X 1, then 

expand9 (W0 , X a) 
[O]Wo [8](W0 x X 0 ) 

[O]Rl 1 [O](R X S) 

[O]Wl --d---,-(W_X_) [O](Wl X Xl) 
expan e 1• 1 

Proof: By induction on (}, Base types are immediate. We will indicate the proof for the 
function type. 

Suppose p0 [[0--+ /3]R]p1 . For any S:Y0 - Y1 , the definition of [0--+ /3]R implies 

By the Canonical-Isomorphism Parametricity Lemma we get 

(assr ;po[Xo x Yo]; ass!) [[O]((R x S) x Q)--+ [/3]((R x S) x Q)] (assr ;p1 [X1 x Y1]; ass!) 

and, by the definition of expand, this is just what we wanted to show. • 
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[x: 0] 

M:if---+{3 

>.x: 0. M : 0, if---+ {3 

V: var[8] 
derefV: exp[8] 

A : exp[8] ---+ comm E : exp[8] 
(A, E) : var[8] 

cl : comm c2 : comm 
C1 ;C2: comm 

skip: comm 

M : 0, if---+ {3 N : 0 

(M N): if---+ {3 

V: var[8] E: exp[8] 
V:=E:comm 

B : exp[bool] M : 0 N : 0' 
ifBthenMelseN: 0 

C: comm E: exp[8] 
do6 C result E: exp[8] 

new6 : (var[8]---+ comm)---+ comm 

Table 1: Typing Rules 

4 Valuations 

Whereas the category-free semantics of types is quite simple, the semantic equations for terms 
will turn out to be comparatively complex. This is a presentation trade-off: the valuations 
in the categorical semantics given later are much simpler, but require a more sophisticated 
interpretation of types. 

A type assignment 11" is a finite function from (an unspecified set of) identifiers to phrase 
types. Some typing rules are in Table 4. The rules are in a natural deduction format. The rules 
for abstraction and application are for the uncurried syntax of types. The pairing construct 
uses the "object-oriented" approach to variables. We write write 11" 1- M : 0 to indicate that 
M: 0 is derivable from (undischarged) assumptions 11". 

The example blocks in the Introduction can easily be desugared into this language. A 
block begin 8 x; C end is rendered as new6 (>.x: var[8]. C). We will arrange matters so new 
always assigns an initial value to the variable created. Of course, we could alternatively let 
the programmer supply this value, in which case the type of new6 would be 

(exp(8], (var(8]---+ comm))---+ comm. 

If 1r is a type assignment then the 11"-compatible environments, and relations between them, 
are as follows. 

• for each store shape W, [1r]W = flxEdom(,.)[1r(x)]W; and 
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[.Ax: B. M] W u d, l [M]W (u I x f-+ d) l 

[derefV]Wu = snd([V]W u) 

[V := E]Wuw = fst([V]W u) ([E]W uw) 

[skip]W us s 

[(P, E)]W us = ((.Xv .\w. [P]Wu(.As. v)w, [E]Wu) 

[C1;C2]Wus = [C2]W u ([C1]W us) 

[do6 C result E]W us = [E]W u ([C]W us) 

[ift B then M else N]W us { [M]Wus, if [B]W us = true 
[N]W us, if [B]W us = false 

Table 2: Valuations 

• for each relation R: W0 - W1 between store shapes, 

The meaning function associated with a judgement 1r f- P: if- f3 will be a family of functions 
[P],.ca-~) W: [1r]W- [B]W- [f3]W indexed by store shapes W. In the case of base types 

{3, we will simply omit the if argument and have [P],.13 W: [1r]W- [f3]W. (The functionality 
of these valuations derives from categorical considerations on the model.) 

We begin with identifiers. If 1r 1-- x : f3 then the valuation is, as usual: [x ]W u = u( x). In 
the case of function types 1r 1-- x: if- {3, given l E [O]W we must produce [x]WulE [f3]W. 
We can apply the meaning of x at the store shape 1 to obtain a function 

u(x)[1]: [B](W x 1)- [f3](W x 1), 

and then we can apply unity isomorphisms to get a function [B](W)--+ [f3](W). So we define 
[x]Wu = unl; u(x)[1]; unr. 

Readers familiar with functor categories will notice that this valuation for identifiers is 
similar to what one obtains by uncurrying a projection A x (B => C) --+ (B => C), where 
B => C is the functor exponent. In general, all of the valuations in the category-free semantics 
are obtained by uncurrying maps in the more standard category-theoretic presentation. 

Most of the valuations for the language are in Table 4. In each equation u is an environment 
in [1r]W for the appropriate 1r and a store shape W and l E [if] is an appropriately typed 
vector of arguments. It is understood that this vector is omitted when the term in question is 
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of base type. In the equation for if, t is either comm or of the form exp[ 8]. The conditional 
extends to other types in the usual inductive fashion. The rules for abstraction and application 
are for the uncurried form of types. 

We will not give denotations, or syntax rules, for ordinary arithmetic and logical opera­
tions. These can be defined by lifting a function f: [81] x · · · x [on] -+ [8] to an interpretation 
for a combinator of type exp[ot] x · · · x exp[on] -+ exp[o] in the evident fashion. 

The block expression do · · · result · · · warrants some explanation; doC result E returns 
the value of expression E in the state that results after executing C. For example, in 

x := 2; y := (dox := lresultderefx) 

the final value of y is 1 whereas the final value of x is 2. Reynolds calls this "snapback 
semantics," because the state change caused by x := 1 is temporary: the state snaps back to 
its initial value on termination of the expression evaluation. There is a problem with snapback 
semantics: it violates what is often called the "single-threaded" nature of state in imperative 
languages [51]. Intuitively, if a state change occurs, the old state is no longer available, so 
there is no way to backtrack to an earlier state. We will discuss this issue further in the 
Conclusion. 

We now turn our attention to the key cases of new and application. 
For store shape W, p E [var[o]-+ comm]W and state wE W, 

[new6]Wupw = fst(p[[o]] (a,e)(w,6)) 

where 6 E [8] is a standard initial value of new variables of type 8, and (a, e) E [var](W x [8]) 
is the new variable, defined as follows: e(w, x) = x and a(y)(w, x) = {w, y). The "acceptor" 
a overwrites the [8]-valued component of the state. The intuition behind this definition is 
that procedure p is executed in an expanded store shape, where the additional [8]-valued 
component holds the value of the new variable. The argument (a, e) provides the capability 
for updating and accessing this variable. The final value of the variable is discarded using the 
projection fst. This is as in [47, 33]. 

The semantics of new is where the parametricity constraints in the model come into play. 
Because of the definition of procedure types, a call top at an expanded store shape W x [8] is 
required to satisfy uniformity conditions induced by relations involving [8]. In the next section 
we will consider a number of examples showing these parametricity conditions at work. 

Next, we consider application. Suppose that we are given 1r 1- M : fJ, jj-+ /3 and 1r 1- N : fJ. 
If(}= /3' is a primitive type then the semantics is simple, obtained by prepending the meaning 
of N onto a suitable vector. 

[M N]Wul = [M]Wu([N]Wu,l) 

It is clear that when jj is empty this is the obvious application. 
The case when (} is not a primitive type is more complex. If (} = (Ji ---+ (3' then we need 

to prepend an element of [tJi -+ (3']W onto a vector. Recall that a meaning of this type is a 
family of functions indexed by store shapes: we need to obtain such a family from the meaning 
of N. 

For a fixed environment u E [1r]W, define gas follows; for all X, 

g[X] = [N]{W x X)(expand"(W,X) u) 

where expansion maps are extended to type assignments pointwise: 
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expand,.(W,X)(u)(x E dom7l") = expand,.(x)u(x). 

Notice that g[X]: [ifl](W x X) -+ [/3'](W x X), so g is certainly of the right form to be in 
[0-; -+ {3']W. It will be shown to satisfy the necessary parametricity constraints in the course 
of proving the Abstraction Theorem below. The semantics of application is 

[M N]Wul = [M]Wug,l 

The reader familiar with semantics in functor categories will notice that expansions come 
into this uncurried style of presentation in the case of application, whereas they appear when 
treating A-abstraction when the semantics is presented in a more conventional curried form. 

Theorem 5 (Abstraction) 

Suppose 7l" f- p : 0-+ /3 and R: Wa - wl is a relation between store shapes; if Uo [[11" ]R] ul 
and d~ [[O]R] d~ then 

[P]Wo ua d~ [ [/3]R] [P]W1 u1 d~ 

(This statement applies to terms of primitive type by omitting various vectors.) 

Proof: The Abstraction Theorem and the well-definedness of [P] are proven simultaneously 
by structural induction on P. Well-definedness is immediate in all cases except application 
(which is the only case where the simultaneity is used in a non-trivial way). 

For the well-definedness of application, suppose 7l" f- M : 0, 0-+ /3 and 7l" f- N : 0. If 0 = /3' 
is a primitive type then the result is immediate, so suppose 0 = if -+ /3'. Well-definedness 
will be assured if we can show that the family of functions 

g[-]: [O'](W X-) -+ [/3'](W X-) 

satisfies the parametricity condition for [0-; -+ /3']W. For S: X 0 +-+ X1 and u E [11"]W define 
ui = expand,.(W, Xi) u. By the Identity Extension Lemma and the Expansion Parametricity 
Lemma, u0 [[11"](~w xS)] u1. (The evident version of the expansion lemma for type assignments 
is a corollary of the one for types.) By the Abstraction Theorem for N (induction hypothesis), 

and so 
g[XaJ[[ifl](~w x S) -+ [/3'](~w x S) ]g[X1] . 

This shows that g e [0-; -+ /3']W, as desired. 
For the Abstraction Theorem, we will consider application and new; all other cases are 

routine. 
For application we have 7l" f- M : O,if-+ /3 and 7l" f- N : 0. Suppose u0 [[7l"]R]u1 and 

d~ [[O]R]l1. If 0 = /3' is primitive then the Abstraction Theorem for N (induction hypothesis) 
guarantees that [N]W0 u0 [[/3']R] [N]W1 u1 and then the Abstraction Theorem forM implies 
that 

[M]Wo Uo ([N]Waua), d~ [ [/3]R] [M]W1 U1 ([N]W1 u1), d~. 
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In the case that 8 = if - {3' we reason in the same manner, but use g0 [[if - f3']R]g11 

where 9i is the meaning determined by the environment ui, as in the definition of application. 
This last property follows from the Abstraction Theorem for N, with a. proof similar to the 
well-definedness of g above using R in place of ~w-

For new, suppose p0 [[var[6]- comm]R]p1 and w0 [R]w1 • We must show that 

The key property is 

(ao,eo}[[var[6]](R x ~[6J)](al,el} 

for the new variables (a0 , e0 } e [var[O]](W0 x [6]) and (a1 , e1} e [var[6]](W1 x [6]). This is 
straightforward to verify. The assumption that p0 and p1 are related then implies 

for any v e [6], and this ensures that the first components of the Pi [[6]] (ai, ei} (wi, v} are 
R-rela.ted. • 

5 Examples of Reasoning 

In each of the examples that follow, an unknown non-local procedure is passed a. limited 
capability for accessing a. local variable, in much the same way that an abstract type gives to its 
"clients" a. limited capability for accessing its representation. The reasoning method employed 
involves choosing a. relation that is satisfied by different arguments to the procedure, and then 
applying the pa.ra.metricity property to infer a. relational property that pairs of procedure calls 
must satisfy. 

For the sake of readability, we continue to use sugared notation for code in the examples. 
The desugarings into the language of the previous sections should be clear. 

We begin by describing a. class of relations that can be used in several examples. Suppose 
W is any store shape and E ~ Z, where, as before, Z is the set of integers; we can then define 
RE:W-.-+ w X z by 

w[RE](w', z} ¢::::::> w = w' and z e E. 

Consider any c e [comm](W x Z) such that 

skip [ [comm]RE] c, 

where skip e [comm]W is defined by skip(w) = w. Then, if p e [comm - comm]W, 
pa.ra.metricity implies that 

(*) p*(skip) [[comm]RE]P[Z](c) 

where p* = unl; p[l]; unr: [comm]W- [comm]W. Hence, p*(skip) is the semantics of an 
isolated procedure call P(skip). We can use this condition whenever we have a. command c 
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that does not change the values of non-local variables and preserves property E of the local 
variable. 

For example, consider the relation Rz; i.e., 

w[Rz](w',z) ~ w = w'. 

Intuitively, entities will be Rz-related if they "work the same way" on the W part of the stack. 
This is a property of z := z + 1 and skip; more precisely, if we define inc e [comm](W x Z) 
by 

inc(w, z) = (w, z + 1), 

then 
skip [[comm]Rz] inc. 

Then we can use the property ( *) to conclude 

p*(skip)w[(Rz).t]P[Z](inc)(w,z). 

This means that the first component of p[Z](inc)(w, z) is equal top* (skip)w. Clearly, then, the 
semantics of variable declarations ensures the first equivalence considered in the Introduction: 

begin 
integer z; 
procedure inc; z := z + 1; 
P(inc) 

end 

P(skip) 

It is important here that w = w' when w[RE](w',z): the parametricity property always acts 
as the identity relation on non-local variables. This is where the identity extension lemma 
and the use of identities in the parametricity constraint on procedure types come into play. 

We would like to emphasize that the reasoning method in this example is simply an 
instance of reasoning about polymorphic functions using Reynolds parametricity ([48]; see 
also [59] for numerous examples of this form of reasoning). The equivalence reduces to the 
following property 

fst(p[l](Ax. x)) fst(p[Z](Ay. (fst y, (snd y) + 1) )) 

for a polymorphic function p:'t/1. (ax 1 - ax 1) - (ax 1 - ax 1). This is what we 
mean when we say that reasoning about local variables often amounts to proving properties 
of polymorphic functions. Of course, it is fairly significant that the polymorphism that we 
are concerned with is predicative in nature; but the point remains that the reasoning method 
we employ is exactly as in [48, 59]. These methods will be seen below to lead to remarkably 
straightforward validations of previously troublesome equivalences. 

Before continuing, it is worth pausing to explain why typical counterexamples to this 
equivalence, which exist in previous models, are not present here. Let W = {true, false}. 
One counterexample is essentially a family of functions 

p[X]: [comm](W x X) -+ [comm](W x X) 
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such that 

p[X](c)(b,x) = { (•b,x), if c(b,~) =J (b,x) 
(b, x), otherwise 

Such a p would break the equivalence, because the left-hand block would negate the state 
(which consists of a single boolean), whereas P(skip) would leave the state unchanged. How­
ever, this p fails to satisfy the parametricity condition, for though skip [[comm]Rz) inc and 
w[R](w, z), it is not the case that 

p*(skip)(b) [Rz]p[Z](inc)(b, z) , 

as p*(skip)b is b, while p[Z](inc)(w,z) is (•b,x). The equality test on states is the culprit in 
the definition of p: any two states (w, z) and (w, z') are "indistinguishable" from the point 
of view of the second domain of the relation Rz, so branching on the equality test violates 
parametrici ty. 

Our second example demonstrates that the invariant-preserving properties of the models 
described in [24, 30] are encompassed by parametricity. If ZfJJ is the set of nonnegative integers, 
we again get skip [[comm]Rz$) inc. The property (*)now ensures that z is non-negative when 
p[Z](inc)(w,O) = (w',z). This can be used to verify that the value of local variable z is still 
nonnegative on termination of the procedure call in 

begin 
integer z; 
z := 0; 
P(z := z + 1); 

end 

Our last example using relations of the form RE is 

begin 
integer z; 
z := 0; 
P(z) 

end 

P(O) 

where P:exp[int]--+ comm; we have left the de-referencing coercion (deref) from var[int] 
to exp[int] implicit in the argument of the call. The intuition here is that the value of z 
will be 0 each time it is used during execution of the call P(z), because P cannot write to z. 
Therefore, this should be equivalent to simply supplying 0 as an argument instead of z. 

To validate this we can use R{o}. The denotation of 0 is the constantly 0 function in 
[exp](W x Z), and the denotation of z, as an expression, is the projection W x Z --+ Z. 
These denotations are then related by [exp]R{o}i i.e., 

W _ _,o'---..... z 
R{a}l lflz 
WxZ z Z 
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because if argument states are related, the Z-valued component is always 0. We can then use 
the parametricity of P, as in the other examples, to conclude that (the denotations of) the 
calls P(O) and P(z) are [comm]R{o}-related, and the equivalence follows from the valuation 
for variable declarations. 

Next we consider a relation that does not fit into the RE pattern: the relation L\.w x R, 
where R: Z +-+ Z is defined by 

zo[R]zl <===* -z1 = zo ~ 0 . 

This can be used to validate the equivalence between blocks that use non-negative and non­
positive implementations of a counter in exactly the manner discussed in the Introduction. 
The representations of the procedures inc and val are directly related by L\.w x R, and we can 
use the parametricity property of procedures to conclude that the calls to non-local procedure 
P are related. This implies the desired equivalence because the semantics of new disposes of 
the Z-valued component of W x Z on termination, and we are left with L\.w-related results. 

We should mention that this last equivalence is in fact valid in the models of [33, 57]. These 
models can typically handle representation independence when the different representations 
being considered are isomorphic. Our final example shows how non-isomorphic representations 
can be dealt with. 

The example involves a simple abstract "switch." A switch will have two associated 
operations. 

flick: turns the switch on; and 

on: a predicate that tests whether the switch has been flicked on. 

The switch is initially off, but remains on after it has been flicked for the first time. 
One representation of the switch will be the evident one using a boolean variable. In the 

other, 0 will correspond to the switch being off, and the on position will be represented by 
any positive integer. These representations are given in the following two blocks, where Pis 
of type ( comm, exp[bool]) ---+ comm. 

begin 
boolean z; 
procedure flick; z :=true; 
boolean procedure on; on := z; 
z :=false; 
P(flick, on) 

end 

begin 
integer z; 
procedure flick; z := z + 1; 
boolean procedure on; on := z ~ 1; 
z := 0; 
P(flick, on) 

end 

A typical counterexample, which exists (in one form or another) in the models of [33, 24, 
31], is p such that 

[X] (c e) (b x) = { (-,b, z), if c(c(b,_ z)) = c(b, z) 
p ' ' (b, z), otherwise 

The equality test on states is once again the culprit. 
This equivalence can be validated in our semantics using a relation of the form ~w x R, 

where R: [bool] +-+ [int] is the least relation such that 

false[R]O 1\ (n ~ 1 => true[R]n) . 
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6 Algebraic Aspects of First-Order Types 

A standard test for the parametricity of models of polymorphism involves connections be­
tween free algebras and the denotations of certain lower-order polymorphic types [48]. For 
example, in a model that is "sufficiently parametric," the type V"(. ('y ~ 1) ~ (I~ 1) of 
Church numerals will (in the absence of recursion) in fact denote a natural numbers object, 
and the type v,. (ax 1 ~ 1) x 1 ~ 1 will be isomorphic to the type list[a] of finite lists 
over a. These representations supply a very clear picture of low-order polymorphic types, and 
are an indication of the constraining effect of the parametricity conditions under considera­
tion. Our purpose in this section is to describe how our parametric semantics yields similar 
representations of first-order Algol types. 

To begin, we consider [comm ~ comm]l. We can use an argument of Plotkin [40] to 
precisely characterize the elements in this set. If p E [comm ~ comm]1 then there is a 
number n such that p[N] (id{*} x succ) (*, 0) = (*, n), where N is the set of natural numbers 
and succ is the successor function. Then for any X, c: X ~ X and x E X, we can set up a 
relation R: N- X where O[R]x and m[R]x' =>- m + l[R]c(x'). The functions succ and care 
then related by R ~Rand we can use parametricity to conclude that p[N] (id{*} x succ) (*, 0} 
and p[X] (id{*} x c)(*, x) are R-related and, in particular, the latter is (*, c" (x)), where c0 = 
skip and cn+l = c ; en. Thus, p is the n-th Church numeral. 

In an Algol-like language, the n-th Church numeral is defined by Ac: comm. en. From this 
we can immediately see two interesting facts. First, every element of [comm ~ comm]1 is 
definable by a closed term. Second, up to semantic equivalence, the local-variable declarator 
new does not figure into closed terms of this type at all, for any closed term of this type will 
be equivalent to one that doesn't use new. One has to go up to closed terms of second-order 
type, or to open terms of first-order, for new to make a difference. 

What we have done here is to follow the analogy between type variables and store shapes. 
[comm ~ comm]1 corresponds to v,. (1 X"(~ 1 X"()~ (1 X"(~ 1 X"(), and, as 1 X"(~"(, 
this should in turn be the Church numerals. The reader familiar with [48] will then be able to 
see how similar representations can be obtained for other first-order Algol types. We collect 
a few examples into the following proposition. 

Proposition 6 (Reynolds) 

We have the following isomorphisms, where a is a store shape. 

[exp[8] ~ exp[8')]a ~ (a~ [8]) ~ (a~ [8']) 
[exp[8] ~ comm]a ~ (a~ [8]) ~(a~ a) 
[comm ~ exp[8)]a ~ (ax list[a] ~a)~ (a~ [8]) 
[comm ~ comm]a ~ (ax list[a] ~a)~ (a~ ax list[a]) 

Proof: These isomorphisms are based on observations in [48]. We will outline the proof of the 
last isomorphism to indicate that these arguments do go through for our semantics of Algol 
types. 

Any c: a x Z ~ a x Z, for some store shape Z, can be decomposed into two functions 
c1: ax Z ~a and c2 : ax Z ~ Z. For a fixed initial state (s, z} E ax Z, let R: Z- list[ a] 
be the smallest relation such that 

z[R]£ z'[R]l =>- c2 (a, z')[R]cons(a, l) 
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where E is the empty list. One can then define a suitable ci such that 

C1 [~a X R - ~,.]ci 

and we have 
{c1 ,c2}[[comm]~a x R]{c~,cons} 

where here we are using {!, g} : A - B x C to denote the tupling function obtained from 
f: A-Band g: A- C. Then if p e [comm- comm]a we get that 

p[Z]c(s,z}[~a x R]p[list[a]]{c~,cons}(s,E), 

and sop is completely determined by the action of the function p[list[a]]. Furthermore, the 
arguments to this function can be taken to be of the form {!,cons} and (s, E) so, as cons and 
E are fixed, this is determined by a function of type (ax list[a] - a) - (a - a x list[a]). 
Conversely, it is easy, using this R, to see how any function of this type determines an element 
of [comm- comm]a. • 

Notice that function types with exp[8] in a contravariant position are represented in a 
pointwise fashion. A meaning at such a type can be applied at a "later stage," after local 
variables have been added to the stack, but such a function is completely determined by 
its behaviour at the "present stage." The reason is that expressions may read from, but 
not write to, local variables. If we pass an argument e e [exp[8]](a x 1) and evaluate 
the resulting function call in state (s, n), then parametricity can be used to show that this is 
equivalent to passing the evident corresponding expression e' e [exp[8]]a x { n }. The pointwise 
exponentiation arises because ax {n} ~a. (This principle was at work in the example from 
the previous section involving P(O) and P(z)). Of course, not all elements of these types will 
be definable; for example, definability of all elements of exp[int] - exp[int] is not possible 
for computability reasons. 

For the types with comm in a contravariant position, changes to a local variable by a com­
mand argument are mirrored by cons: a list of a's records non-local states when a comma.nd 
argument is executed. The representation of comm - exp[8] illustrates the non-single­
threaded nature of the semantics. In a semantics that captured single-threading properly 
we expect that the occurrences of list[a] would disappear, because single-threading should 
mandate that commands cannot be executed within expressions. 

These representations are limited to first-order types: we do not know of characterizations 
of level-two types such as, for example, (comm- comm)- comm. A similar phenomenon 
occurs in models of polymorphism: much is known about level-two polymorphic types, but 
considerably less for level three. (Here our understanding breaks down at level two because 
these types correspond semantically to level-three functional types.) 

The situation in the presence of recursion is more complex due to lifting, and we do not 
have a clear general picture, given by a clean scheme like the one in [48], of the denotations 
of all first-order types in the presence of recursion. Characterizations of certain specific types 
have been obtained, however; we illustrate with [comm- comm]l. 

Let Vnat be the vertical natural numbers, i.e., the natural numbers with the usual "less 
than" order, and with an extra top element oo. VnatP is the vertical naturals with the 
ordering reversed. Then 

[comm- comm]l N.L ® Vnat 0 P 
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where 181 is the smash product. 
An outline of the proof of this isomorphism is as follows. Using the isomorphism 1 x a ~ a, 

a meaning in [comm- comm]l will be a family of continuous functions 

satisfying the parametricity condition. If p[N] succ 0 = l_ then p corresponds to (1_, oo}. If 
p[N] succ 0 = n then there will be a smallest m such that p[N] (succ[n + m]) 0 = n, where 
(succ[k]) a = a+ 1 if a < k and l_ otherwise. In this case p corresponds to (n, m}. The 
desired isomorphism can then be shown using parametricity with an argument similar to the 
one used by Plotkin for the Church numerals: we define an appropriate relation that relates 
an argument in a- a.L to a succ[k]. 

As before, every element of this domain can be defined by a closed term, with the ap­
propriate boolean tests and a term diverge: comm that denotes the constantly-1_ function. 
Specifically, (1_, oo} is defined by diverge, and (n, m} is defined by 

.Xc: comm. if (do cn+m result 1) = 1 then~ else skip 

The test (do~+m result 1) = 1 will converge, and return true, iff cn+m converges. The skip 
branch never gets executed. 

It is now possible to appreciate the role of Vnat0P. It concerns "lookahead," in the sense 
that we look to see if n + m executions of c will converge and, if so, we execute c n times. 
This illustrates how a semantics that properly captures single threading could perhaps lead 
to simpler representations. For example, the closed terms of type comm - comm definable 
without do- result- are, semantically, in correspondence with N.L, which is considerably 
simpler than N.L 181 Vnat 0P. 

7 Relations and Reflexive Graphs 

The category-free presentation, though quite elementary, is also rather ad hoc in some respects. 
In the next few sections we will endeavour to place the model into a categorical context, 
providing some justification for the definitions. 

A first attempt would be to say that the model lives in a category of "relators" ([27, 21, 1]). 
The objects map store shapes and relations between them to sets and relations between them 
in a way that preserves identity relations, and the morphisms are families of functions, indexed 
by store shapes, satisfying a parametricity constraint. While it is true that each type in our 
model determines a relator, the relator viewpoint is not quite satisfactory. The appropriate 
notion of exponentiation for relators is pointwise: (A - B)(X) = A(X) - B(X) for X 
a store shape or relation. A better categorical explanation of the model would connect our 
interpretation of procedure types with exponentiation, and our interpretation is not pointwise. 

This is the point at which we must bring out the functor-category structure, which shows 
up in the category-free presentation in the use of expansion functions. It will be seen that 
each type determines a functor from the category of store shapes from [33] to the category 
of sets. The interpretation of procedure types then has some of the flavour of a functor­
category exponential, but with additional parametricity constraints. A suitable category will 
be obtained by considering both the relator and functor aspects of types, along with naturality 
and parametricity conditions on morphisms. 
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The reader might have noticed that naturality properties were never used in proving any of 
our results in previous sections, or in reasoning about example equivalences. The place where 
naturality does come in is in trying to prove the validity of the laws of the typed >.-calculus. It 
would have to be accounted for if we were to validate these laws directly in the category-free 
semantics; in the categorical semantics it will be crucial to get a Cartesian closed category. 

In the following, we will need functor-like maps that preserve a certain kind of relational 
structure. There is a fundamental difficulty, however. We do not want to insist on relations 
being composable, and so the structure that must be preserved is not really "categorical." One 
reason for not requiring composability is that, as is well known, composition is not preserved 
by logical relations at higher types. Another is that we want to be able to generalize to n-ary 
relations for n > 2, and then there is no evident notion of composition. 

We propose that the appropriate way to describe the relational structure that is needed 
is to use the notion of a reflexive graph. A reflexive graph is conventionally a set of vertices 
with (oriented) edges between them; furthermore, for any vertex v, there is a distinguished 
edge from v to itself, the identity on v. Notice that a reflexive graph is more structured than 
a set (because there are edges as well as vertices), but less structured than most categories 
(because edges need not be composable). 

We will actually consider a generalization, familiar to category theorists, where categories 
of vertices and edges are allowed [3, 17, 14]; the conventional notion of reflexive graph be­
comes the special case in which the vertex and edge categories are small and discrete. In 
some examples, the edge objects will be relations over pairs of vertex objects, and the edge 
morphisms will be relation-preserving pairs of vertex morphisms; however, in general, edges 
are not required to be any of the usual categorical forms of relation [21, 27]. 

Here is a precise definition: a reflexive graph 9 consists of two categories, 9v (vertices) and 
9 e (edges), and three functors between them as follows: 

960 

such that 91 ; 96, = 19• fori= 0, 1, where; denotes composition in diagrammatic order and 
19 • is the identity functor on 9v. Intuitively, 96, specifies the i'th domain for each edge and 
edge morphism, and 91 specifies the identity edge for each vertex and vertex morphism. 

An equivalent and more elegant presentation is as follows: a reflexive graph is a functor 
9: G- CAT, where CAT is the meta-category of all categories and functors between them 
[22], and G is the two-object category whose (non-identity) morphisms are as follows: 

Do 
( I 
v ---='---- e 

~~_8_1~) 

with I ;8; = idv fori= 0, 1, where idv is the identity morphism on v. (More generally, reflexive 
graphs with n-ary edges would be generated by the two-object category having non-identity 
morphisms I: v - e and 8;: e - v for i = 0, 1, ... , n - 1, with a similar commutativity 
requirement.) 

As our first example, we define a reflexive graphS (sets) as follows. 
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• The "vertex" category, Sv, is the usual category of sets and functions. 

• The "edge" category, S., has binary relations on sets as objects and relation-preserving 
pairs of functions as morphisms; i.e., a morphism with domain R: W0 +-+ WI and co­
domain S:Xo +-+ X1 is a quadruple (R,fo,JI,S) such that fo[R ~ 5]!1. We will use 

fo 
Wo-Xo 

the relational-parametricity diagram Rf ts to depict such a morphism. The 

composite of 

fo 
Wo-Xo 

Rl fs and 

wiTxi 

wiTX1 

Yo fo;Yo Xo -Yo Wo ---=-.:...:...::....:._-..Yo 

st fr is then defined as Rl fr, and 

xl -YI YI wi YI 
fl;gl 

idwo 
Wo-Wo 

the identity morphism on a relation R: Wo +-+ W1 is Rf fR. 
wl :----d wl 

1 W, 

• Functors S6,: S. ~ Sv for i = 0, 1 are defined by S 6, ( R: W0 +-+ W1 ) = W; and 

w----L-x 
• Functor S1:Sv ~ S. is such that S1(W) =~wand S1(f: W ~X)= ~w l t~x 

w1 x 

Category S. is the category of relations over sets presented in [21]. Furthermore, the Sh, 
are similar to the forgetful functor U used there in a categorical treatment of the (first­
order) "abstraction theorem," and sf is similar to the functor J used there in a categorical 
treatment of the "identity extension lemma." Hence, some of the key entities introduced in 
[21] are incorporated in the reflexive graphS. 

As our second example, we define a reflexive graph V (domains) as follows. 

• Vv is the category of directed-complete partially-ordered sets and continuous functions. 

• v. has complete binary relations as objects, and relation-preserving pairs of continuous 
functions as morphisms. Composites and identities are evident . 

• The functors v6,:v. ~ Vv fori= 0,1 and VI:Vv ~ v. are defined exactly as for s. 

Finally, we define a reflexive graph W (worlds) having the small category :E of "state 
shapes" described in [33] as its vertex category Wv. The category :E is as follows. 

• The objects are (certain) sets, including desired data types, such as { true,jalse} and 
{ -2, -1, 0, 1, 2, ... }, and all finite (set) products of these. 
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• The morphisms from W to X are all pairs ¢, p such that 

- ¢ is a function from X to W; 

- pis a function from W x X to X, where the x here (and throughout this example) 
is the set-theoretic Cartesian product; 

- for all x E X, 
p(¢(x), x) 

for all x E X and w E W, 
¢(p(w, x)) 

for all x EX and w,w' E W, 

x· 
' 

w· 
' 

p(w,p(w',x)) = p(w,x). 

For example, there is an "expansion" morphism (¢>,p):W- X such that X= W x Y 
for some data type Y with ¢(w, y) = w and p( w, (w, y)) = (w, y); i.e., ¢> "projects" a 
large stack into the small stack it contains, and p "replaces" the small stack contained in 
a large stack by a new small stack, leaving unchanged local variables on the large stack. 
In fact, Oles shows that any (¢, p): W- X induces a set isomorphism X~ W x Y for 
some non-empty set Y; that is, up to isomorphism, every morphism is an expansion. 

• The composite of morphisms (¢,p):W- X and (1/Y',p'):X- Y is (1/Y",p"):W- Y 
such that ¢" = ¢';¢and p"(w, y) = p' (p(w, ¢' (y)), y). 

• The identity morphism on W is ( ¢, p) such that ¢( w) = w and p( w, w') = w. 

A category We of relations over I: can be defined as follows. 

• The objects are relations R: W +-+ X, where W and X are :!:-objects. 

• A morphism with domain R: W0 +-+ W1 and co-domain S: X0 +-+ X 1 is a quadruple 
(R,(¢ 0 ,p0 ),(¢1,pi),S) such that ¢0[S- R]¢1 and Po[R x S- S]p1. Again, we use 

( 1/Yo, Po) Wo --'-'---'-:.......;c.. X o 

diagrams of the form Rt ts to depict morphisms in We· 

wl--_.,...xl 
( ¢1, pl) 

• Composition and identities are defined straightforwardly in terms of those in I:. 

We can now complete the definition of W by using diagonal relations for the identities, 
and defining the domain functors in the evident fashion. 

The definition of "related" I:-morphisms above is particularly noteworthy: 
rxr0 (!/Yo, Po) X X !/Yo TXT TXT X Po X 
YV' o o - rr o rr o X o --- o 

Rt ts is a morphism in We iff both st tR and R X st ts 
w~ (¢>hPd x~ x1 ~W1 w~ x x~-----p.;--x~ 

are morphisms in Se. This definition ensures that appropriate relations will be preserved 
by variable de-allocation (using the "projections" ¢1) and by state changes in larger worlds 
induced by changes at smaller ones (using the "replacements" p;). Notice that We is not a 
category of relations over ~ in the sense of [21]; in fact, ~ does not even have a terminal 
object. 
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8 Parametric Functors and Nat ural Transformations 

Next we describe a category of "parametric" functors and natural transformations. The 
description will be highly tailored to the specific definitions of W and S, but at the end 
of the section we sketch a more general setting for the definitions. 

A parametric functor from W to S consists of 

• a mapping F0 from W.,-objects to S.,-objects; 

• a mapping F1 from W.,-morphisms to S.,-morphisms; and 

• a mapping F2 from We-objects to Se-objects 

such that 

• if f: w ~ x in W., then F1 (f): F0 ( w) ~ F0 ( x) in S.,; 

• F1 (idw) = idFo(w) for every W.,-object w; 

• F1(J; g)= F 1 (f); F 1 (g) for all composable W.,-morphisms f and g; 

• if R: w ~ x in We then F2(R): Fo(w) ~ Fo(x) in Se; 

• F2(~w) = ~Fo(w)' for every W.,-object w; and 

fo 
wo--xo 

• if Rt ts in We, then 

FI(Jo) 
Fo(wo) Fo(xo) 

F2(R) 1 1 F2(S) in Se· 

wlhxl Fo(wi) ---F0 (xi) 
F1(!1) 

The first three conditions say that F0 and F 1 constitute a conventional functor from W., to 
S.,; the next two conditions say that F0 and F2 constitute a "relator" [27, 1]; and the last 
condition is a parametricity constraint. This last condition is closely related to the Expansion 
Parametricity Lemma and is crucial for function types to behave properly, e.g. for currying to 
satisfy relevant parametricity conditions. We will adopt the usual notational abuse of using a 
single symbol such as F to denote all three mappings. 

If F and G are parametric functors from W to S, 'TJ is a parametric natural transformation 
from F to G if it maps W.,-objects to S.,-morphisms such that 

• for every W.,-object w, q(w): F(w) ~ G(w); 

F(w) TJ(w) G(w) 

• for every W.,-morphism f: w--+ x, F(J) 1 1 G(J) commutes; and 

F(x) TJ(x) G(x) 

F(wo) TJ(Wo~ G(wo) 

• for every R: w0 ~ w 1 in We, F(R) 1 1 G(R) in Se. 

F(wt)-( ) G(wt) 
'TJ W1 
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The first two conditions say that TJ is a conventional natural transformation from F toG, and 
the last condition is a parametricity constraint. 

Parametric natural transformations compose in the obvious point-wise way (like "vertical" 
composition of natural transformations). The category having all parametric functors from 
W to S as objects and all parametric natural transformations of these as morphisms will be 
denoted sw. 
Theorem 7 

sw is cartesian closed. 

Proof: Products can be defined pointwise: 

(F x G)(w) F(w) x G(w) 
(F X G) {f) F(f) X G(f) 
(F X G)(R) = F(R) X G(R) 

with the obvious (parametric) projections. A terminal object 1 has 1 (X) = { *}, 1 ( ¢>, p) = id{.} 
and 1(R) = d{•} 

For exponentiation, we first define the analogue of "representable" functors [22, 16]. If X 
andY are store shapes then hX(Y) = Homw.(X,Y), and for f and g maps in E, hl(g) = 
Homw.(f,g), so that hi g (h) f; h;g. If R: X 0 +-+ X1 and S: Y0 +-+ Y1 , then hRS: hxoyo---. 
hx, Y1 is such that 

Xo _l!_yo 

iff Rt ts in We. 

x~~Y~ 

We write hx (-)for the parametric functor that sends Y to hxY, f to hidx f and R to ht.x (R). 
Exponentiation is then defined on store shapes as follows: 

cF X = Homsw(hx X F,G); 

on morphisms, 
(GF f p)[Z](g, a) = p [Z] (!; g, a) ; 

and on relations, p[GF R]q iff 

VS: Wo +-+ W1. p[Wo] [hRS x G(S)- F(S) ]q[Wt) 

It is not difficult to show that GF satisfies the functor and relator requirements, and the 
condition that a parametric functor send related Wv-morphisms to related Sv-morphisms. 

The application and currying maps are exactly as in presheaf categories. The application 
map app: F x GF ---=-+ G is 

app [W](a,p) = p[W](idw, a). 

Naturality follows as usual. To see that it is parametric, assume p0 [(GF)R]p 1 and a0 [F(R)]a 1• 

idwo 
Wo--Wo 

As Rt tR, we have that (idw0 , a0 )[hR R x F(R)](idw,, a 1 ), and the definition of GF (R) 

w~~d w~ 
I W, 
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implies (Po[Wo](id, a0 ) )[G(R)](p1[Wl](id, a1) ). The Currying map 

curry: Hom(F x G, H) ---+- Hom(F, HG) 

lS 

curry m W a(!, b) = m X (F(f)a, b) 

where f: W -+ X in Wv· The naturality of currym is shown as usual, and parametricity is 
proved using the condition that F send related Wv-morphisms to related Sv-morphisms. That 
curry and app have the required properties of exponentiation is straightforward; this is where 
the naturality requirements are crucial. • 

We now show how to interpret types as parametric functors from W to S. We use the 
angled brackets((·)) to distinguish the parametric-functor semantics from [·]. 

For expressions: 

• for every Wv-object W, 
((exp[8]))W = W-+ [8] , 

• for every Wv-morphism (¢, p): W-+ X and e E ((exp[8]))W, 

((exp[8]))(¢,p) e = ¢; e, 

and 

• for every R: Wo +-+ W1, 
« exp[ 8J» R R-+ Ll[6] • 

For commands: 

• for every Wv-object W, 
((comm))W = W-+ W; 

• for every Wv-morphism (¢,p): W-+ X, x EX, and c E ((comm))W, 

((comm))(¢,p) c x = p(c(¢(x)),x), 

and 

• for every R: W0 +-+ W1, 
((comm))R = R-+ R. 

For the morphism part what we do is execute con the small part of the stack, i.e. c(<f>(x)), 
and then use p to replace the small part of x with the resulting final state. 

The parametricity conditions on these functors are easily verified. It is noteworthy that 
these pointwise definitions are actually isomorphic to what is obtained by introducing the 
obvious contravariant "states" functor S and defining 

((exp[8])) = S -+ 0[8] 

(( comm)) = S -+ S 
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using a parametric version of "contra-exponentiation" [31], where OD is the constant functor 
whose object, morphism, and relation parts always yield D, idn, and b.n, respectively. This 
is an indication of the effectiveness of the parametricity constraints. 

For storage variables: 

(( var [ 8])) X 

((var[ 8]))( ¢, p) 

((var[8]))R 

([8] ----+ ((comm))X) x ((exp))X 

(id[6] ----+ ((comm)) (¢, p)) x ((exp))(8, p) 

(!J.[6] ----+ ((comm))R) x ((exp))R. 

For procedures we use exponentiation in SW: 

(( jj ----+ (3)) = ((3)) ( 8) . 

Here, ((ii)) is the product of ((Oi)) for the components of the vector. Of course, as sw is a ccc we 
could ignore vectors and interpret procedure types in a curried syntax: (0----+ 0')} = (0'))«11». 

The interpretations of terms can be given exactly as in [33]. We have already seen the 
application and currying maps in the proof of Proposition 7, and these are exactly as in functor 
categories. We will define 

new: ((var----+ comm)) ~ ((comm)) 

to indicate how variable declarations are treated. For Wv-object W, p e ((var----+ comm))W 
and we W, 

new6 Wpw = fst(p[Wx[8]](f,(a,e))(w,t5)) 

where f: W - W x ((8)) is an "expansion" morphism in Wv, 8 e ((8)) is the standard initial 
value of new variables, and (a, e) e ((var)) (W x Z) is the new variable, defined as follows: 
a(z')(w, z) = (w, z') and e(w, z) = z. 

We conclude this section by sketching a more general context for these definitions; it can 
be skipped without loss of continuity. A morphism M: 9 ----+ 1-i of reflexive graphs is a pair of 
functors Me and Mv that map edges to edges and vertices to vertices in a way that preserves 
domains and identities; i.e., 

9e 
Me 

'He 
gd 

Mv 
! 1-i6; 

9v 1-iv 
gd 

Me 
!1t1 

9e 'He 
commutes for i = 0, 1. Composition of graph morphisms is defined component-wise. 

Notice that a morphism of reflexive graphs is nothing other than a natural transformation 
between graphs viewed as functors. Furthermore, what we called a "parametric" natural 
transformation above is an instance of the concept of modification [15]. (More precisely, the 
category sw is equivalent to the category having natural transformations between the graphs 
W and S (viewed as functors) as objects and modifications as morphisms.) This gives some 
assurance of the appropriateness of the various conditions in the definition sw, which uses 
simplifications that depend on specific structure in W and S. 
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Another perspective on our model can be given in terms of internal categories. As is well 
known, reflexive graphs in CAT can be equivalently viewed as internal categories in a category 
of (large enough) reflexive graphs. Parametric functors then correspond to internal functors 
between internal categories, and parametric natural transformations to internal natural trans­
formations. We gave the "reflexive graphs in CAT" presentation here because we felt that it 
might be (slightly) more accessible. 

However, the internal category viewpoint perhaps shows more directly the connection to 
[47, 33]: our semantics could be considered as essentially that of [33], but re-cast in a context 
where terms like "functor" must be understood as pertaining to categories that live in another 
category. This is the reason why the definitions of currying, application, new, etc., for (the 
categorical presentation of) our model are just like those given by Oles. Of course, the interest 
in our model derives more from the semantics of types than of valuations. The uniformity 
conditions arising from relational parametricity give us stronger reasoning principles than in 
a standard functor-category framework. 

9 When Parametricity Implies Naturality 

We now undertake to explain the connection between the category-free and parametric-functor 
presentations of our semantics, and also to uncover why an "uncurried" treatment of types is 
used in the category-free version. 

First, we need a result from [33] about morphisms in the category Wv of store shapes. 

Lemma 8 (Expansion Factorization (Oles)) 

Every Wv -morphism W --+ X can be factored into an expansion followed by an isomorphism: 

W~WxY~X. 

Recall that the Isomorphism Functoriality Lemma played an important role in the category­
free semantics. A condition analogous to it was not needed in the definition of reflexive graph 
because of the following result which, it should be noted, applies to any parametric functor 
(and not just definable ones). 

Lemma 9 (Isomorphism Correspondence) 

For every parametric functor A, if(</>, p): W--+ X is an isomorphism then the function A(p, </>) 
and relation A(R) have the same graph, where R: W +-+ X is the relation having the same 
graph as </>- 1 • 

Proof: Let f = ( ¢, p). From the definition of related Wv morphisms we have 

w~w w~w 
~wl !R and Rl t~w. 

w1 x xj=lw 
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As A is a parametric functor, we obtain 

A(W) 
A(idw) 

A(W) A(W) 
A(idw) 

A(W) 

A(~w)! 1 A(R) and A(R)! 1 A(~w)-
A(W) 

A (f) 
A(X) A(X) A(J-1) A(W) 

If a E A(W) then the left-hand diagram implies that a[A(R)]A(!)a, using the fact that A 
preserves diagonal relations and identity morphisms. Conversely, if a[A(R)]b then the right­
hand diagram implies that A (f) a= b, and the graphs of A (f) and A(R) are therefore equal. • 

We are now in a position to give (sufficient) conditions under which the naturality require­
ments are superfluous. 

Theorem 10 (Naturality) 

Suppose A: W --+ S is a parametric functor and p[ -]:A(-) --+ (([3)) ( -) is a family of functions 
satisfying the following parametricity condition: for all R: X 0 +-+ X1 , 

A(Xa) p[Xa] (([3))(Xo) 

A(R) 1 1 «f3))(R) . 

A (X I) -p-=-[ x--=1]:-- (([3))( X I) 

Then p is automatically natural: for all g: X -+ Y in W.,, 

A(X) p[X] (([3))(X) 

A (g) l l «f3))(g). 

A(Y)--p~[Y~]-.«f3»(Y) 

Proof: Consider any g. By the Expansion Factorization Lemma it can be factored into a 
composite e ; i, where e: X --+ X x W is an expansion and i: X x W --+ Y is an isomorphism. 
The result will follow if we can show commutativity of 

A(X) 
p[X] 

((/3)) (X) 

A(e) l 
p[X X W] 

l (([3)) (e) 

A(X X W) (({3)} (X x W) 

A(i) 1 
p[Y] 

1 (([3)) ( i) 

A(Y) «!3)} (Y) 

The commutativity of the bottom part follows immediately from the Isomorphism Correspon­
dence Lemma and the parametricity property for p. We will show the commutativity of the 
top part for j3 = comm; the other base types are treated similarly. 
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Consider any wE W. Define Rw:X +-+X X W by x[Rw](x',w') iff x = x' and w = w'. 
X idx X 

Clearly we have ~x 1 1 R . Thus, as A is a parametric functor, for any a E A(X) 

X e XxW 
we have that a[A(Rw)]A(e)(a), and so, using the parametricity of p, we get 

p[X] ax [Rw] p[X x W](A(e)a) (x, w} 

for any x EX. From the definition of Rw, and of ((comm}} on morphisms, this implies that 

((comm}}(e) (p[X]a) (x,w} = p[X x W](A(e)a) (x,w). 

As this argument works for any w E W, the commutativity of the top part of the diagram 
follows. • 

Note that the naturality constraints in ((if- fJ}}X are also superfluous by this result, taking 
A= hx x ((if}}. 

We are finally in a position to see where the category-free semantics of types given earlier 
comes from. First, in a type if- f3 we can do away with all naturality constraints, as these are 
implied by parametricity. Second, by the Expansion Factorization Lemma any Wv-morphism 
factors into a "true expansion" followed by an isomorphism. Further, by the Isomorphism 
Correspondence Lemma the action of a procedure meaning on the isomorphism part of such a 
factor is completely determined by the action of parametric functors on relations. Thus, when 
defining a procedure meaning pat store shape W we do not need to consider all Wv-morphisms 
out of W, but only the "true expansions" of the form W- W x X. {An analogous property 
for certain functor categories has been observed by I. Stark.) 

Theorem 11 (Representation) 

Suppose A: W - S is a parametric functor. Then ( ((fJ}}A) W is isomorphic to the collection of 
those families 

p[-]: A(W X -) - ((fJ}}(W X -) 

satisfying the following parametricity condition: for all R: X 0 +-+ X 1 , 

A(W x X 0 ) -----=-p--=-[X_o],__((fJ}}(W x X 0 ) 

A(~w x R) 1 1 ((fJ}}(~w x R) 

A(W X Xi) p[Xd ((fJ}}(W X XI) 

Proof: Let D denote the collection of p's satisfying parametricity. We will set up an iso­
morphism f:((fJ))AW - D with inverse g. First we have fm[X] = m[W x X](e,·}, 
where e: W- W x X is the expansion. Conversely, if we have a map (¢>,p): W - Z then 

this factors into an expansion followed by an isomorphism W ....:. W x Y ~ Z. Then we set 
g p [Z] ((¢>,p), a} = ((fJ}}(i) (p[Y](A(i- 1)a)), where i- 1 is the inverse of the iso i. 

(In this definition of g, the factors e and i are not uniquely determined; however, it is 
easy to show, using parametricity on isomorphisms, that ((fJ}}(i) (p[Y](A(i- 1)a)) is uniquely 
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determined for any factorizations. In any case, Oles has shown how a canonical choice of 
factors is possible.) 

That f m satisfies parametricity is immediate from the parametricity of m, using the fact 
W e WxX 

that ~w 1 1 ~w x R, for any R, and for e the expansion. That g p satisfies the 

W e WxX 
parametricity condition for ((f3))A W follows from the parametricity condition on p, together 
with the Isomorphism Correspondence Lemma and the Isomorphism Factorization Lemma. 
Naturality is then a result of the Naturality Theorem. Thus we see that f and g are well­
defined. We can show that they are inverse as follows. 

g (! m) [Z] ((</J, p), a) ((!3)) i(fm[Y] (A(i- 1)a)) 
((f3))i(m[W x Y](e,(A(i- 1)a))) 
m [ Z] ( ( e ; i), a) 
m [ Z] ( ( </J, p), a) 

where the second-last step uses naturality of m and the fact that i and i- 1 are inverse isos. 
Conversely, the definitions of f and g give us 

f (gp)[X] a g p [W x X] ( ( e: W - W x X), a) 
((/3)) i (p[X]a) 

and in the factorization of e (in the last step) we can take i as the identity (because e; id = e), 
so f (g p)[X]a = p[X]a. • 

Thus we see that the calculation of (the object part of) function types in the category-free 
semantics is isomorphic to what is obtained from exponentiation in the parametric-functor 
semantics. It is also not difficult to see that the relation parts of the two semantics are iso­
morphic, and that the expand maps correspond to the morphism parts of parametric functors. 
Furthermore, the semantics of .A-abstraction and application that were given are precisely 
those obtained (after suitable uncurrying) from the Cartesian closed structure of sw. The 
details of these aspects of the correspondence should be abundantly clear to a reader who has 
followed so far, and are sufficiently routine to warrant omission. 

There is one final matter that we must clear up. We have thus far steadfastly adhered to 
an "uncurried" presentation of the semantics of types, whereas in the ccc sw this is of course 
not necessary. The uncurried presentation is needed, however, for the category-free semantics 
to work properly. The reason is that parametricity does not imply naturality in general, but 
only for parametric functors of a specific form. 

It will be simpler if we discuss this relationship between parametricity and naturality 
first in the context of the category-free semantics, and then translate to the categorical one. 
Consider the type comm- comm, and the family of elements m[-] e [comm- comm][-] 
defined by 

m[X][Y]c(x,y) = (x,y'), where c(x,y) = (x',y'). 

This family of elements is "parametric" in the following sense: for all relations R: X - X' 
between store shapes, m[Xl[[comm- comm]R] m[X']. (Following the analogy with poly­
morphism, m is essentially an element of Vot't/1. (ax 1- ax 1) - (ax 1- ax 1)). For 
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m to be natural with respect to expansions we would need that 

if m[X x Y][Z]c((x,y),z) = ((x1,y1),z1} 
and m[X][Y x Z]c*(x, (y, z}} = (x2, (y2, z2}} 
then x1 = x2, y1 = y2, and z1 = z2 

where c* is obtained from c by the evident associativity isomorphism. From the definition of 
m, if c( (x, y), z) = ( (x, y'}, z}, so c* (x, (y, z)) = (x, (y', z), we get that 

m[X x Y][Z)c((x, y}, z} = ((x, y}, z} 

while 
m[X][Y x Z]c*(x, (y, z}} = (x, (y', z)}. 

The naturality property fails because y and y' need not be equal, as c can certainly change 
this component. 

Expressing this argument more categorically, we can define a family of functions 

m[-]: 1(-)--+ ((comm--+ comm)}(-) 

that satisfies parametricity, but not naturality. The definition is 

m[X](*)[Z]((¢, p), c) s = p(¢(s), c(s)}. 

This clearly satisfies parametricity, but the naturality diagram 

m[X] 
{ *} ----=--~-- (( comm --+ comm})X 

idl l ((comm--+ comm))e 

{*} m[XxY] ((comm--+comm))(XxY) 

fails, for e an expansion, using essentially the same counterexample as above. That is, for 

e': X x Y--+ (X x Y) x Z 

the state m[X](*)[(X x Y) x Z]((e; e'), c) ((x, y}, z) will not necessarily be equal to the state 
m[X x Y](*)[(X x Y) x Z](e', c) ((x, y), z). 

From this we see a curious property. While parametricity implies naturality for all families 
of maps in the correct position to qualify as a transformation from ((comm)) to ((comm)}, the 
analogous property does not hold for maps from 1 to ((comm--+ comm)). Thus, we see the 
reason for the uncurried presentation of types that we gave in the category-free semantics: 
the property that relational parametricity implies natura/ity is not stable under currying and 
uncurrying isomorphisms. 

At this point it is worth mentioning that these observations are not at all at odds with 
the result of [41] that relational parametricity implies (di)naturality. This result applies under 
assumptions that are not met here. (For instance, in [41] the source and target categories are 
the same, while here the source Wv is different from the target Sv.) 
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10 The PER Model 

In presenting a model based on partial equivalence relations we are taking the opposite tack 
to the one taken with the relational model. We begin with a presentation based on functors 
and natural transformations, and work our way back towards a functor-free description. 

Once the decision has been made to re-cast the ideas of [47, 33] in a realizability setting, the 
definition of the model falls out almost immediately. We work with a category of "realizable" 
functors PERI:, where PER is the usual category of partial equivalence relations and E is a 
suitable version of Oles's category of store shapes. As most of the definitions are essentially 
as in [33], we will move fairly quickly over the material in this section. The point of the 
development is to show how this simple re-casting of the Reynolds-Oles ideas gives us good 
uniformity conditions for reasoning about local variables. 

We will be working with categories equipped with a notion of realizability. These structures 
can be viewed elegantly as internal categories in the effective topos, or in the category of w-sets 
(see [12, 13, 20]). To simplify the presentation we will keep internal-category aspects of the 
model in the background (though this viewpoint certainly guides the definitions). 

We use m · n to denote Kleene application on w, the natural numbers (i.e., the application 
of the m'th partial recursive function ton). (-,-)is a recursive bijection from wxw tow, and 
fst and snd are numbers such that fst · (m, n) = m and snd · (m, n) = n. We let pid denote 
a code for the identity function on w, and pcomp a realizer for composition in diagrammatic 
order, so pcomp · m · n ·a = n · (m ·a). (We adopt the convention that Kleene application 
associates to the left.) 

A per A is a partial equivalence relation (transitive, symmetric) on the natural numbers. 
The equivalence class of n is [n]A = {m I n[A]m}. The set of equivalence classes is Q(A) = 
{[p]A I p[A)p}. The domain of A is dom(A) = {n I n[A]n}. 

A morphism f: A -+ B of pers is a function from Q (A) to Q (B) such that 

3n. \fp. p[A]p implies J((p)A) = [n · P]B 

(This assumes that n·p is defined.) We say that n realizes f (notation: n I= f), and often write 
lnl: A -+ B to indicate a map that n realizes. Composition is just composition of functions. 
This defines the category PER. 

Ob(PER) and Mor(PER) are the sets of objects and morphisms of PER. There is no 
notion of realizability for objects of PER, or rather this notion is trivial: 

\fA e Ob(PER) \in. n I= A. 

PER is cartesian closed. A terminal object 1 is the per that relates all natural numbers, so it 
has one equivalence class. If A and B are pers, then the pers Ax B and A=? B are defined by 

{a,b)[AxB] (a',b') iff a[A)a' 1\ b[B)b', 

m[A=?B]n iff \fa,a'.a[A)a'implies (m·a)[B](n·a') 

Again we will ignore recursion in this semantics. It could be incorporated using one of the 
PER categories that possess domain-theoretic structure [2, 5, 35). 
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10.1 Store Shapes 

Oles's construction of the category of store shapes can be carried out starting from any category 
C with finite products, by expressing the equational constraints on morphisms as commutative 
diagrams. The resulting category L: (C) is as follows. (The proof that this is indeed a category 
follows routinely as in (33).) 

OBJECTS. The objects are those of C. 

MORPHISMS. A L:(C)-morphism from W to X is a pair of maps ¢:X ~ W and 
p: W x X~ X in C such that the following three diagrams commute: 

X X X cp X id w X X 

diagl lp 
X ---id.,.--..-X 

fst x (snd; snd) w X (W X X) w X X 

id X pl lp 
w x x-----::-P----x 

IDENTITIES. The identity on X is (idx, fst), where fst is the first projection. 

COMPOSITION. If cp,p:X ~ Y and cp',p':Y ~ Z, their composite is cp",p" where 
cp" = cp'; cp and p" is (((id x ¢'); p),snd) ; p'. (Here(·,·) is the pairing associated with 
the Cartesian structure in C, not the recursive pairing bijection on w.) 

For example, L:( C) is Oles's category of store shapes for a suitable small cartesian subcat­
egory C of the category of sets. More interestingly (as pointed out by A. Pitts), the category 
We of relations between store shapes from Section 7 is also a category of the form L:( C), for C 
a suitable (small) subcategory of the category Se of binary relations and relation-preserving 
pairs of functions. This is further justification for the definition of related Wv-morphisms. 

We are going to work with L:(PER) as our category of store shapes; in this section, we 
simply call this L:. As with PER, there will be no realizability relation for objects. For 
morphisms, if (cp,p):W ~X in L: then (m,n) f= (cp,p) iff m f= c}:X ~Wand n f= 
p: W x X ~ W as PER maps. Note that here (m, n) is not a pair, but a number produced 
by the pairing bijection. We again use the notation lml: X ~ Y for a morphism in L: realized 
by m. (The ambiguity in the notations f= and I · I, which are used both for PER and L:, is 
always resolved by the context.) 

The expansion maps X ~ X x V are realized by expand= (fst, overwrite) where 

overwrite· (x',(x,v)) = (x',v). 

We will often rely on equations such as the one for overwrite to define a realizer implicitly. 
This will be more readable than using .X and projections everywhere, as in 

overwrite = .Xy. (snd · y, snd · (fst · y)) . 
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The identity on a E-object X is given by the realizer wid= (pid,jst ). For composition, 
suppose l(f,g)I:X --+ Y and I(J',g')I:Y --+ Z. A realizer (r,q} for their composite is as 
follows: r is pcomp · f' · f, and 

q·(z,x} = g'·(z,g·(f'·z,x}) 

From this definition it is clear that there is a number wcomp such that wcomp · h · i realizes the 
composite lhl; Iii in E. Notice that expansions, composition and identities are given uniformly, 
by a single realizer for each. 

10.2 Realizable EU.nctors and Natural Transformations 

A functor F from E to PER is realizable iff there is a number n such that 

'Vh E Mor(E) 'Vm. if m f= h then n · m f= F(h). 

We say that n realizes F. There is no condition on how F acts on objects. As F is a functor 
it preserves identities and composites. Notice, however, that the explicitly-specified realizers 
for identities and composites need not be preserved. For example, m · wid = pid need not 
hold; m ·wid must simply be a realizer for the identity on F(A), for each PER A. 

Suppose F and G are realizable functors from E to PER. A natural transformation 
'f/= F ...:..;. G is realizable iff for some n, 

'VX E Ob(E). n f= 'f/ X. 

For a natural transformation to be realizable all of its components must be given by the 
same code. Realizable natural transformations compose in the usual componentwise (verti­
cal) fashion. We let PERE denote this category of realizable functors and realizable natural 
transformations. 

Proposition 12 (Freyd-Robinson-Rosolini) 

PERI: is Cartesian closed. 

Proof: E and PER, together with their notions of realizability, can be viewed as internal 
categories in the category of w-sets, or the ••-separated presheaves in the effective topos. As 
such a category, PER is "complete" and Cartesian closed (see [50] for a discussion of various 
notions of completeness). By the result of [7] this means that the internal category offunctors 
E -- PER is (internally) Cartesian closed, which implies that the external category PERE 
of realizable functors is Cartesian closed. • 

The exponential in this functor category can be described using the appropriate analogues 
of Yoneda functors. If X andY are E objects, then the PER hxy is such that m[hXY]n iff 
lml = lnl: X --+ Y as E maps. The realizer for the morphism part of hx (-)is 

>.f. >.g. wcomp · g · f 

IfF and G are realizable functors, then the PER GF (X) is 

m[GF(X)]n iff lml = lnl:hx x F---=-+- G. 
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A realizer for the morphism part of GF is h where 

h·f·m·(a,b) = m·((wcomp·f·a),b). 

The semantics of base types goes as follows. (We assume that there is a PER [ 8] associated 
with each data type 8.) 

For expressions, 

[exp[8]]A = A=? [8] 

On ~-morphisms, when l(f,g)j:A ~ B, we want 

[exp[8]] I(J,g)j: (A=?[8]) ~ (B=?[8]) 

A realizer of this map is m such that 

m. e. 8 = e. (f. s). 

A realizer for [exp[ 8]]: Mar(~) ---+ Mor(PER) is then ).h >.e >.s. e · (fst · h · s). To see that this is 
a good definition, notice that, from the relation-preservation property of PER maps, if s[B]s', 
e[A =? N]e' and f[BxA =? B]f', then e · (J · s) = e' · (f' · s'). Notice also that this realizer is 
completely independent of 8. It is as if the realizer were parametrically polymorphic in 8. 

For commands: 

[comm]A = A=?A 

and a realizer for 

[comm] I(J,g)j: (A=? A)~ (B=?B) 

is m such that 
m·c·s = g·(s,c·(f·s)). 

For variables, 
[var[8]]A = ([8]=?[comm]A) x [exp[8]]A 

and 
[var[8]] I(J, g)j = { (id[b] =? ([comm] I(J, g)j), ([exp[8]] I(J, g)j)} 

where we are using=? on morphisms in the usual way and { ·, ·} is the pairing assiciated with 
the Cartesian structure of PER; the required realizer should be evident. 

Procedure types are defined using the exponential in PERl:: [0 ~ 0'] = [O'][e]_ 
These definitions of types are almost exactly as in [33]. The semantics of terms is also 

essentially similar. We illustrate by defining the semantics of new. First we define the 
standard local variable locvar. 

We need a realizer ace for the acceptor part of a local variable. It is given by 

ace· n · (s, m) = (s, n) 

The number (s, m) is thought of as a state, where s is the non-local part of the stack. 
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The expression part of a local variable should map (s, m) to m, so it is simply snd. We 
then define 

locvar = (ace, snd ) . 

Notice that locvar e dom([var]X x Y), for any :E-objects X andY. The standard local variable 
is "uniformly given" for all worlds. 

For new6, we need a realizable natural transformation [var[6]-+ comm]....:.. [comm]. Its 
realizer new6 is as follows: 

new6 • p · s = fst · (p · (expand, locvar) · (s, 6)) 

Once again, 6 is a standard initial value for variables of type 6. We could, of course, do a.wa.y 
with this standard value by accepting the initialization as an argument to a new block. Then 
the realizer for new would be independent of 6 altogether. 

10.3 Naturality and the Groupoid Interpretation 

Our aim is to obtain results analogous to the Naturality Theorem and Representation Theo­
rem, but using uniform realizability in PERs in place of Reynolds parametricity. This will be 
done in the context of the groupoid interpretation of polymorphism from [7, 36]. 

In the usual Maggi-Hyland interpretation of polymorphism, a type with, say, one free 
type variable is interpreted as (internally) a function F: Ob(C) --+ Ob(C) where C is a.n 
internal category and the V quantifier is interpreted as an internal product. In the case that 
Cis PER, the product VF is the intersection nxeOb(PER) F(X). The groupoid interpretation 
modifies this by interpreting a type as a functor F: ciso --+ C, where C is the groupoid of 
isomorphisms in C. Then VF is taken to be a limit of the functor F. In the case of PER, 
the groupoid interpretation of VF can be calculated as follows: m[VF]n iff m[nx F(X)]n and 
(! · i · m)[F(Y)](J · j · n) whenever Iii = Iii: X--+ Y is a.n isomorphism and f is a realizer for 
F. 

We will continue to work externally. One point that should be noted, however, is that by 
PERiso we actually mean the category of isomorphism pairs from PER. This is needed to 
allow effective computation of inverses. 

Lemma 13 (Expansion Factorization for PER) 

Every E-morphism ( </>, p): W --+ X can be factored into an expansion followed by an isomor­

phism W ~ W x Y ~ X. Furthermore, Y can always be taken to be a super-per of X, and 
realizers for i and its inverse can be effectively calculated from a realizer for ( ¢, p). 

Proof: Suppose I(!, g) I: W --+X. Define the PER Y by 

Notice that X is a. sub-per of Y. The isomorphism i is coded by (f',g') where 

f' .\x. (! · x,x) 
g' pcomp · g · fst 
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Clearly, f' and g' are obtained effectively from f and g and the inverse of j(f',g')l is 

(g, pcomp · f' · fst) 

That these maps have the required properties can be shown straightforwardly using the the 
definition of Y and the diagrammatic conditions on maps in E. • 

We can then show that, for transformations into a base type, naturality on all maps is 
assured if we assume naturality with respect to isomorphisms only. 

Theorem 14 (Naturality for PER) 

Suppose A: E- PER is a realizable functor and jnj: A(-) - [,8]( -) is natural with respect to 
isomorphisms in E. Then lnl is natural on all maps in E. 

Proof: As any E-map factors into an expansion followed by an isomorphism, the result will 
follow if we can show 

A(W) _ ____,l__,ni __ [,B] (W) 

A(jexpandl) 1 1 [,B](jexpandl) 

A(W x X) lnl [,B](W x X) 

We will give the proof for f3 = comm. 
Consider any x E dom(X), and let R., be the PER with domain {x}. Then 

jexpandj:W- W x R., 

is an isomorphism in E, and the assumption of naturality on isomorphisms implies that ( n · 
(h ·expand· at)· (w1 , x))[W x R.,]((n · a2 • w2), x) when a1[A(X)]a2 and wi[W]w2 , where his 
a realizer for A. If the PER X is non-empty, we have R, ~ X and, since expand also realizes 
the expansion W - W x X, 

(n · (p · expand· a I)· (w1 , x) )[W x X]((n · a2 • w2 ), x) 

as required. If X is the empty PER, then commutativity is assured trivially. • 
We are now ready to relate suitably uncurried function types to the groupoid interpretation 

of polymorphism. First, note that there is an obvious embedding functor E: PERiso - E. It 
is the identity on objects, and on morphisms takes an isomorphism pair j(i,j)j: X - W in 
PERiso to the map j(j, (pcomp · fst · i))j. The requirement that a morphism in PERiso consist 
of both an isomorphism and its inverse is important here for the functor E to be realizable. 
Composing with E then takes a functor E - PER to PERiso - PER. 

For F: PERiso- PER and X a PER, let F(X x -) be the (realizable) functor that takes 
Y to F(X x Y) and an isomorphism ito F(X xi). 

Theorem 15 (Representation for PER) 

Suppose A: E- PER is a realizable functor. Then ([f3]A)W is isomorphic to 

v( ((E; A):::} (E; [f3])){W x -) ), 

where \f is as in the groupoid interpretation and ( -) =? ( -) is the evident bifunctor 

PERiso x PERiso - PER. 
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Proof: The only non-trivial part of the proof is to set up the isomorphism from the PER 

v( ((E; A) => (E; [;J]))(W X-)) to ([;J]A)W. Let hA amd h/3 be realizers for A and [;3]. 
Recall from Lemma 13 that, given a realizer r for a map W -+ X in :E, we can effectively 

calculate a realizer r; for i in the factorization W ~ W x Y _i__. X together with a realizer 
ri 1 for its inverse iso. (Recall also from the proof of 13 that the calculation of r; and ri 1 1s 
independent of W, X, and Y.) The isomorphism that we want is realized by j such that 

j · m · (r, a) = h13 · r; · (m ·(expand, (hA · r;- 1 ·a))) 

Lemma 13 and Theorem 14 can then be used to show that j codes a well-defined map and 
that it is an isomorphism whose inverse is realized by k where k · p ·a = p ·(expand, a). • 

Using known facts about PER models ([13, 6]) we immediately obtain that, for example, 
[comm-+ comm]l is isomorphic to the PER N that relates each natural number to itself. 

We do not know if this theorem goes through for the Maggi-Hyland interpretation of 
polymorphism with PERs. It does whenever A is a product of Algol base types, but what 
happens at higher-order Algol-definable types is not clear to us. 

If we try to generalize the result by allowing [;J] to be an arbitrary realizable functor then 
we run into the same problem as in the relational model. Specifically, if 

m·n·((f,g),c)·s = g·(f·s,c·s) 

then lml: 1 (-) -+ [comm-+ comm](-) is natural on isomorphisms, but not on all maps. It is 
interesting to compare this to the result of Freyd, Robinson and Rosolini [6]. They show that 

any realizable natural transformation between realizable functors PERiso __!____. PER ~ PER 

and PERiso ~ PER __!!____. PER, where I is the embedding, determines a natural transforma­
tion between F and G. Our counterexample simply shows that the analogous property does 

. E [] 
not hold for composites PER150 --+ E --+ PER. 

We conclude the section with an example of reasoning about local variables using PERs. 
Recall the abstract "switch" from the end of Section 5 

begin 
boolean z; 
procedure flick; z :=true; 
boolean procedure on; on := z; 
z :=false; 
?(flick, on) 

end 

begin 
integer z; 
procedure flick; z := z + 1; 
boolean procedure on; on := z 2': 1; 
z := 0; 
?(flick, on) 

end 

Let 2 be a PER of booleans: its equivalence classes are {0}, regarded as false, and {1}, 
regarded as true. By the semantics of new and the Representation Theorem for PERs, we 
can show the following equivalence of polymorphic functions: 

fst (p[N]((id x .Xn. n + 1), .Xs. snd(s) ~ 1) (s, 0)) 
_ fst (p[2]((id x .Xn.l), .Xs. snd(s) = 1) (s, 0)) 

for p: \11. (a x 1 -+ a x 1) x (a x 1 -+ 2) -+ a x 1 -+ a xI)· Here, ~ 1 and = 1 are the 
obvious functions that return 0 or 1 depending on the values of their arguments. 
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To reason about these functions we consider a number of realizers. Let flickl be such that 
flickl·(w, n) = (w, n+1). Similarly, flick2·(w, n) = (w, 1), onl·(w, n) = if n ~ 1 then 1 else 0 
and on2 · (w, n) = if n = 1 then 1 else 0. If m is a realizer for p then 

m · (flickl, on1) E dom(W x N =} W x N) 

and 
m · (flick2, on2) E dom(W x 2 =} W x 2). 

Consider the PER N+ that relates 0 to itself and all positive numbers to one another. Then 
flickl[W x N+ =} W x N+]fiick2 and onl[W x N+ =} 2]on2. Since 

mE dom((W x N+ =} W x N+) x (W x N+ =} 2) =} W x N+ =} W x N+)) 

we may conclude that 

(m · (flick1, on1)) [w x N+ =} W x N+] (m · (flick2, on2)) 

This means that 

fst . ( m. (flick1, onl) . (wl, 0)) [ w] fst . ( m. (flick2, on2) . (w2, 0)) 

whenever w 1 [W]w2 , so the results are "equal" (in the same W-equivalence class), which is 
what we wanted to show. 

The pertinent aspects of PERs that we have used here are that the same number realizes 
instantiations of p at different types, and that realizers in instantiations 2 and N for different 
arguments to p are "equivalent" in the PER N+. All of the examples from Section 5 can be 
validated using similar reasoning. 

11 Conclusion 

In this work we have argued that the phenomenon of local state is intimately linked to Stra­
chey's notion of parametric polymorphism, and we have shown that reasoning about local 
variables often amounts to proving properties of polymorphic functions. The straightforward 
treatment of a number of test examples, and representations of first-order types obtained from 
parametricity, lend a measure of support to our position. However, as is the case with models 
of polymorphism, little is known about the semantics at higher types, and we do not know if 
full abstraction can be achieved using our methods. 

No previous model of local variables correctly handles all of the test equivalences that 
we have demonstrated here. However, Sieber [53] (building on the earlier paper [24]) has 
recently constructed a model which also treats all of them correctly. Sieber's model is similar 
in many respects to our relational-parametricity model: it also is based on functors and logical 
relations; however, the exact connection between the models is not clear to us. Firstly, Sieber's 
approach is tightly tied to locations. Our approach can also be applied with a location-oriented 
semantics (as we did in the preliminary version (32]), but a location-free semantics is much 
cleaner, as predicted in (47]. A more substantive difference has to do with identity relations. 
Sieber allows for non-identity relations on the set of natural numbers; this ties up with the 
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treatment of sequentiality in [52]. And there is also some question concerning the respective 
roles of identities in treating function types. 

Our identification of parametricity as the central notion connected to locality provides, in 
our opinion, a sounder conceptual basis for explaining why and how this form of uniformity 
arises in local-variable semantics. In the Sieber and Meyer-Sieber work, logical relations appear 
primarily as an ad hoc method of cutting down a model. The fact that many of the subtleties 
in local-variable semantics involve the form of data abstraction that can be achieved with 
procedures and local variables gives a fairly coherent explanation as to why parametricity and 
logical relations should be relevant. And, as we have seen, reasoning about local variables 
often amounts to proving properties of polymorphic functions. The PER model serves to 
further underscore our position. 

But, independently of this, we would like to acknowledge the influence of [24] on this work. 
For one, contemplation of their equivalences-which incidentally are primarily responsible for 
a wider understanding of the subtleties involved in local-variable semantics-played a part 
in leading us to propose parametricity as a central theme. For another, their use of functors 
and logical relations certainly had an influence, albeit indirectly, on our development of the 
relational-parametricity model. 

Honsell, Mason, Smith and Talcott [11] have developed a logic for reasoning about state 
based on operational, rather than denotational, semantics; see also the earlier paper [23]. 
Once again, we feel that the conceptual principles underlying their formal rules for reasoning 
about local state are not as clear as, and lack the coherence of, our parametricity-locality 
connection. Their logic appears to be quite powerful, however, and many of the subtle local­
variable equivalences can be proven in the logic. It would be interesting to see if a suitable 
representation-independence property for local state could be derived in their logic, or if such 
a property could be formulated in a way that could be added to their reasoning framework. 

We have used the framework of reflexive graphs mainly to examine the specific structure 
of our model, but it may have more general interest. Reflexive graphs could conceivably be 
of use in studying the connection between relational parametricity and naturality in a more 
general context, or in clarifying the mathematical significance of using diagonal relations as 
"identities." It may be that our Cartesian closure result can be considered as an instance of 
a reflexive-graph version of the usual result that the functor category ex is Cartesian closed 
whenever Cis Cartesian closed and complete (the results of [7] could be relevant here). Similar 
kinds of structure have been used by Pitts [39] in his study of relations and recursive domain 
equations, and by Pitts and Stark [38, 37] in their study of dynamic allocation. Dynamic 
allocation poses challenging problems beyond those considered here, where we have considered 
variable declarations that obey a stack discipline. (Some examples from [38] suggest that 
parametricity, by itself, might not be sufficient for understanding dynamic allocation.) 

The problem of single threading is deserving of further attention. It is interesting that 
most work on the semantics of state, including that of the authors, has concentrated on local 
variables. In our opinion, the single-threaded nature of state is at least as fundamental an issue 
as the nature of local variables. In this paper, the main aim was to examine the phenomenon 
of locality, and we feel that it is reasonable to study this in isolation from single threading. 
However, ideally a semantics of state should exclude the kind of state backtracking found in 
the block expression. 

(A. Meyer has pointed out that the "single threading" terminology can be misleading. The 
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issue does not concern single versus multiple threads of execution, but rather "backtracking 
within a single thread." Since the term "single threading" is now used extensively in the 
functional programming community, we continue to use it here to avoid needless terminological 
differences. The reader should be warned, however, of the possible confusion that may arise 
if one thinks of the more common programming usage of the term "thread.") 

A simple equivalence which illustrates the problem is the following: 

if x = 0 then f(O) else 1 if x = 0 then f(x) else 1. 

This equivalence fails in our model because of the phenomenon of temporary side effects; an 
f that distinguishes these terms is )..y: exp[int]. doint x := 3 result y. 

This particular equivalence is given only to illustrate the problem, and is not itself a 
serious challenge for semantics: we have known for some time how this and similar examples 
of temporary side-effect can be eliminated. One method is to use the state-set restrictions 
of [58]. Another, which is somewhat less "intensional," is to interpret a function type for 
expressions so that the state argument appears only at the outermost level; i.e., we would 
define 

[exp[8]- exp[o']]W = W- ([8] - [8']) 

(this is as in [8]). But these must be regarded as limited partial solutions. What we do not 
have is a general semantic explanation of single threading that encompasses such special cases. 

The first thing that comes to mind when considering single threading is to try and apply 
ideas from linear logic; however, naive attempts we have made along these lines have failed. 
One difficulty is that linearity captures only one aspect of state: that a state change destroys 
the old state. It does not capture the intuition that there may be multiple readers of a variable 
in a context where the variable is not assigned to. A more serious difficulty is that an Algol 
program is single-threaded only in the state, not in phrase types, and it is not obvious how 
to reconcile this with the interpretation of procedure types. A less naive use of linear logic, 
which involves non-trivial extensions to the basic framework, appears in preliminary work of 
Reddy [42]. It will be interesting to see if the single-threaded nature of state can be made 
precise in this setting. (Reddy's semantics also appears to handle local variables well.) 

One of the problems we faced in this work was that parametricity is a concept whose 
rigourous formulation is still undergoing development, e.g. [59, 21, 7, 41]. We illustrated 
our ideas with two of the more appealing approaches, those based on PERs and logical re­
lations, but it may be expected that our understanding of locality will improve with that of 
parametricity (or possibly vice versa). 

An interesting possibility might be to bypass models altogether by examining a syntactic 
translation from (a recursion-free dialect of) Algol into the polymorphic A-calculus. Such a 
translation is implicit in, or can easily be obtained from, the category-free presentation of 
our semantics (consider especially the PER model). One could ask which Poly-A theory is 
generated by this translation, where we equate all Poly-A terms that are the translations 
of observationally equivalent Algol terms (and close up under the equational rules of the 
polymorphic calculus). A related question is whether there is a Poly-A theory for which this 
translation is fully abstract (in that equivalence is preserved and reflected); we conjecture that 
the maximum consistent Poly-A theory of Maggi and Statman [28] is one such example. One 
can also ask whether there is a unique such theory. 
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We do not know if there is there is any difference between the equational theories generated 
by our PER and relational-parametricity models; this is of course related to outstanding ques­
tions about the PER model of the polymorphic A-calculus. Nevertheless, there are advantages 
to each model. 

In the case of PERs the model construction is smoother in some respects that the relational 
one: it is simply a re-casting of the ideas of [47, 33] in a realizability setting. Once the decision 
is made to work with PERs it is quite obvious how to proceed. We work with a category of 
"realizable" functors PERl: forE a suitable version of Oles's category of store shapes. Certain 
properties, like Cartesian closure, are then immediate from known results [7]. In contrast, a 
proper categorical understanding of the relational model required considerably more work, the 
framework itself (of reflexive graphs) not being a priori obvious. 

On the other hand, the PER model can be criticized for its reliance on an underlying model 
of the untyped A-calculus; after all, there is nothing impredicative about Algol! In this respect, 
the relational model, which is completely predicative, is more satisfactory. Furthermore, 
the relational model provides a very direct codification of common informal techniques for 
reasoning about data abstraction in imperative languages. 

Of course, the corresponding advantage of the PER-based model is that it extends to an 
interpretation of a polymorphic variant of Algol. A direction for future work would be to give 
a model for such a language in which data abstraction using local variables is combined with 
that obtained from user-defined types. The design and semantics of such a language is not as 
straightforward as it may seem. There are subtleties in interpreting polymorphic conditionals, 
due to the state dependence of the boolean type; this is related to problems discussed in [56]. 
We expect that quantifiers would have to range over appropriate state-dependent objects. 
Also, as mentioned in [48], close attention should be paid to the distinction between data 
types and phrase types. For example, the assignment operation should be thought of as a 
parametric polymorphic function, for polymorphism over data types, while, e.g., a fixed-point 
operator should be parametrically polymorphic over phrase types. 
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