61 research outputs found

    Mechanical properties of fine-grained carbonate concretes with a complex additive, including fine limestone filler and superplasticizer

    Get PDF
    The stress-strain properties of fine-grained carbonate concretes, despite the fact that they have proven themselves well in various types of construction, have not been studied to the same extent as the deformation and strength properties of traditional heavy concrete. The object of the study is to find ways to improve the physical and mechanical properties of fine-grained carbonate concretes by using a mineral complex additive consisting of a finely dispersed limestone filler and a superplasticizer in the composition of concrete. The relationship between the ultimate values of strength characteristics (cubic strength) and crack-initiating stresses and deformations for conventional and carbonate fine-grained concrete compositions were analyzed. Through the damping mechanism of the cracking process in concrete, due to the joint work of a superplasticizer and a carbonate microdisperse filler a composition of carbonate fine-grained concrete was obtained, capable of resisting static and dynamic loads, with a dense structure and increased reliability and durability

    Metaheuristic optimization of reinforced concrete footings

    Get PDF
    The primary goal of an engineer is to find the best possible economical design and this goal can be achieved by considering multiple trials. A methodology with fast computing ability must be proposed for the optimum design. Optimum design of Reinforced Concrete (RC) structural members is the one of the complex engineering problems since two different materials which have extremely different prices and behaviors in tension are involved. Structural state limits are considered in the optimum design and differently from the superstructure members, RC footings contain geotechnical limit states. This study proposes a metaheuristic based methodology for the cost optimization of RC footings by employing several classical and newly developed algorithms which are powerful to deal with non-linear optimization problems. The methodology covers the optimization of dimensions of the footing, the orientation of the supported columns and applicable reinforcement design. The employed relatively new metaheuristic algorithms are Harmony Search (HS), Teaching-Learning Based Optimization algorithm (TLBO) and Flower Pollination Algorithm (FPA) are competitive for the optimum design of RC footings

    Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors

    Get PDF
    BACKGROUND: Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. RESULTS: We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. CONCLUSIONS: These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.This work was supported by the Gatsby Charitable Foundation (RG62472), by the Royal Society (RG69135) and by the European Research Council (ERC-2014-STG, H2020, 637537)

    Enzymatic process for generation of foods, feedstuffs and ingredients therefor

    No full text
    A method for processing organic materials into highly soluble food products is provided by treating the organic material with one enzyme at pH and temperature conditions optimal for reaction followed by a condition change to inactivate the first enzyme while creating an optimal condition for a second enzyme and further terminating the second reaction by inactivating the second enzyme. A third enzyme may optionally be added to this reaction. The sequential enzyme-treated products are then cooled, filtered and dried thereby transformed into final food products.U

    Enzymatic process for generation of foods, feedstuffs and ingredients therefor

    No full text
    A method for processing organic materials into highly soluble food products is provided by treating the organic material with one enzyme at pH and temperature conditions optimal for reaction followed by a condition change to inactivate the first enzyme while creating an optimal condition for a second enzyme and further terminating the second reaction by inactivating the second enzyme. A third enzyme may optionally be added to this reaction. The sequential enzyme-treated products are then cooled, filtered and dried thereby transformed into final food products.U

    Enzymatic process for generation of foods, feedstuffs and ingredients therefor

    No full text
    A method for processing organic materials into highly soluble food products is provided by treating the organic material with one enzyme at pH and temperature conditions optimal for reaction followed by a condition change to inactivate the first enzyme while creating an optimal condition for a second enzyme and further terminating the second reaction by inactivating the second enzyme. A third enzyme may optionally be added to this reaction. The sequential enzyme-treated products are then cooled, filtered and dried thereby transformed into final food products.U

    Enzymatic process for generation of foods, feedstuffs and ingredients therefor

    No full text
    A method for processing organic materials into highly soluble food products is provided by treating the organic material with one enzyme at pH and temperature conditions optimal for reaction followed by a condition change to inactivate the first enzyme while creating an optimal condition for a second enzyme and further terminating the second reaction by inactivating the second enzyme. A third enzyme may optionally be added to this reaction. The sequential enzyme-treated products are then cooled, filtered and dried thereby transformed into final food products.U
    corecore