50 research outputs found

    Affinity chromatography in dynamic combinatorial libraries: one-pot amplification and isolation of a strongly binding receptor

    Get PDF
    We report the one-pot amplification and isolation of a nanomolar receptor in a multibuilding block aqueous dynamic combinatorial library using a polymer-bound template. By appropriate choice of a poly(N,N-dimethylacrylamide)-based support, unselective ion-exchange type behaviour between the oppositely charged cationic guest and polyanionic hosts was overcome, such that the selective molecular recognition arising in aqueous solution reactions is manifest also in the analogous templated solid phase DCL syntheses. The ability of a polymer bound template to identify and isolate a synthetic receptor via dynamic combinatorial chemistry was not compromised by the large size of the library, consisting of well over 140 theoretical members, demonstrating the practical advantages of a polymer-supported DCL methodology

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Occurrence of hyphomycetes and actinomycetes in red-yellow latosol from a cerrado region in Brazil

    No full text
    A study to quantify the populations of filamentous fungi and actinomycetes was undertaken in a cerrado area, in Corumbatai county, São Paulo, at different depths of medium-textured red-yellow latosol, correlating them to humidity, organic matter, pH of the soil and climatic factors. The technique used was the serial dilution of composite soil samples (n=4), using Martin's medium with streptomycin for filamentous fungi and a starch medium for actinomycetes. The number of filamentous fungi was more abundant in the first soil layer, 0-5 cml compared to the other depths. The number of actinomycetes was higher between 5 cm and 50 cm depth. There were two-monthly variations in the number of filamentous fungi and actinomycetes. A sharp drop in fungi was found in May 1988 at all depths of the soil, when there was lower air temperature and an atypically high monthly rainfall for this period in the cerrado. Statistically significant and directly proportional correlations were obtained between the number of actinomycetes and the rainfall at depths of 0 to 5 cm and 50 to 100 cm. The results obtained in the different soil layers to 100 cm depth demonstrated the importance of the first 5 cm layer due to the heavy concentration of microorganisms, mainly the filamentous fungi, together with the highest organic matter content

    Terahertz Detection Related to Plasma Excitations in Nanometer Gate Length Field Effect Transistor

    No full text
    International audienceThe channel of nanometre field effect transistor can act as a resonant cavity for plasma waves. The frequency of these plasma waves is in the Terahertz range and can be tuned by the gate length and the gate bias. During the last few years Terahertz detection and emission related to plasma wave instabilities in nanometre size field effect transistors was demonstrated experimentally. In this work we review the recent results on sub-THz and THz detection by 50-300nm gate length III-V HEMTs and Si MOSFETs. We present experimental results on the resonant and nonresonant (overdamped) plasma wave detection and discuss possible applications of nanometre field effect transistors as new detectors of THz radiations
    corecore