482 research outputs found
Metric Dimension for Gabriel Unit Disk Graphs is NP-Complete
We show that finding a minimal number of landmark nodes for a unique virtual
addressing by hop-distances in wireless ad-hoc sensor networks is NP-complete
even if the networks are unit disk graphs that contain only Gabriel edges. This
problem is equivalent to Metric Dimension for Gabriel unit disk graphs. The
Gabriel edges of a unit disc graph induce a planar O(\sqrt{n}) distance and an
optimal energy spanner. This is one of the most interesting restrictions of
Metric Dimension in the context of wireless multi-hop networks.Comment: A brief announcement of this result has been published in the
proceedings of ALGOSENSORS 201
L-Visibility Drawings of IC-planar Graphs
An IC-plane graph is a topological graph where every edge is crossed at most
once and no two crossed edges share a vertex. We show that every IC-plane graph
has a visibility drawing where every vertex is an L-shape, and every edge is
either a horizontal or vertical segment. As a byproduct of our drawing
technique, we prove that an IC-plane graph has a RAC drawing in quadratic area
with at most two bends per edge
Grid-Obstacle Representations with Connections to Staircase Guarding
In this paper, we study grid-obstacle representations of graphs where we
assign grid-points to vertices and define obstacles such that an edge exists if
and only if an -monotone grid path connects the two endpoints without
hitting an obstacle or another vertex. It was previously argued that all planar
graphs have a grid-obstacle representation in 2D, and all graphs have a
grid-obstacle representation in 3D. In this paper, we show that such
constructions are possible with significantly smaller grid-size than previously
achieved. Then we study the variant where vertices are not blocking, and show
that then grid-obstacle representations exist for bipartite graphs. The latter
has applications in so-called staircase guarding of orthogonal polygons; using
our grid-obstacle representations, we show that staircase guarding is
\textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Visibility Representations of Boxes in 2.5 Dimensions
We initiate the study of 2.5D box visibility representations (2.5D-BR) where
vertices are mapped to 3D boxes having the bottom face in the plane and
edges are unobstructed lines of sight parallel to the - or -axis. We
prove that: Every complete bipartite graph admits a 2.5D-BR; The
complete graph admits a 2.5D-BR if and only if ; Every
graph with pathwidth at most admits a 2.5D-BR, which can be computed in
linear time. We then turn our attention to 2.5D grid box representations
(2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit
square at integer coordinates. We show that an -vertex graph that admits a
2.5D-GBR has at most edges and this bound is tight. Finally,
we prove that deciding whether a given graph admits a 2.5D-GBR with a given
footprint is NP-complete. The footprint of a 2.5D-BR is the set of
bottom faces of the boxes in .Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Bar 1-Visibility Drawings of 1-Planar Graphs
A bar 1-visibility drawing of a graph is a drawing of where each
vertex is drawn as a horizontal line segment called a bar, each edge is drawn
as a vertical line segment where the vertical line segment representing an edge
must connect the horizontal line segments representing the end vertices and a
vertical line segment corresponding to an edge intersects at most one bar which
is not an end point of the edge. A graph is bar 1-visible if has a bar
1-visibility drawing. A graph is 1-planar if has a drawing in a
2-dimensional plane such that an edge crosses at most one other edge. In this
paper we give linear-time algorithms to find bar 1-visibility drawings of
diagonal grid graphs and maximal outer 1-planar graphs. We also show that
recursive quadrangle 1-planar graphs and pseudo double wheel 1-planar graphs
are bar 1-visible graphs.Comment: 15 pages, 9 figure
The Partial Visibility Representation Extension Problem
For a graph , a function is called a \emph{bar visibility
representation} of when for each vertex , is a
horizontal line segment (\emph{bar}) and iff there is an
unobstructed, vertical, -wide line of sight between and
. Graphs admitting such representations are well understood (via
simple characterizations) and recognizable in linear time. For a directed graph
, a bar visibility representation of , additionally, puts the bar
strictly below the bar for each directed edge of
. We study a generalization of the recognition problem where a function
defined on a subset of is given and the question is whether
there is a bar visibility representation of with for every . We show that for undirected graphs this problem
together with closely related problems are \NP-complete, but for certain cases
involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
3D Visibility Representations of 1-planar Graphs
We prove that every 1-planar graph G has a z-parallel visibility
representation, i.e., a 3D visibility representation in which the vertices are
isothetic disjoint rectangles parallel to the xy-plane, and the edges are
unobstructed z-parallel visibilities between pairs of rectangles. In addition,
the constructed representation is such that there is a plane that intersects
all the rectangles, and this intersection defines a bar 1-visibility
representation of G.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
On Embeddability of Buses in Point Sets
Set membership of points in the plane can be visualized by connecting
corresponding points via graphical features, like paths, trees, polygons,
ellipses. In this paper we study the \emph{bus embeddability problem} (BEP):
given a set of colored points we ask whether there exists a planar realization
with one horizontal straight-line segment per color, called bus, such that all
points with the same color are connected with vertical line segments to their
bus. We present an ILP and an FPT algorithm for the general problem. For
restricted versions of this problem, such as when the relative order of buses
is predefined, or when a bus must be placed above all its points, we provide
efficient algorithms. We show that another restricted version of the problem
can be solved using 2-stack pushall sorting. On the negative side we prove the
NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201
- …
