
Drawing Directed Acyclic Graphs:
An Experimental Study*

Giuseppe Di Battista 1, Ashim Garg 2, Giuseppe Liotta 2, Armando Parise 3,
Roberto Tamassia 2, Emanuele Tassinari a, Francesco Vargiu 4, Luca Vismara 2

I Dipartimento di Discipline Scientifiche, Sezione Informatica
Universit~ degli Studi di Roma Tre, Italy

dibat t ist a@iasi, rm. cnr. it
Center for Geometric Computing, Department of Computer Science

Brown University, USA
{ag, gl, rt, iv}@cs.brown, edu

s Dipartimento di Informatica e Sistemistica
Universits degli Studi di Roma "La Sapienza", Italy

{parise, %ass inar}�9 unir omai. it
4 Autoritk per Plnformatica nella Pubbliea Amministrazione

Italy
vargiu~aipa, it

Abstract . In tiffs paper we consider the class of directed acyclic graphs
(DAGs), and present the results of an experimental study on four draw-
ing algorithms specifically developed for DAGs. Our study is conducted
on two large test suites of DAGs and yields more than 30 charts compar-
ing the performance of the drawing algorithms with respect to several
quality measures, including area, crossings, bends, and aspect ratio. The
algorithms exhibit various trade-offs with respect to the quality mea-
sures, and none of them clearly outperforms the others.

1 I n t r o d u c t i o n

Over a decade of research in the graph drawing area, motivated by applications
to information visualization, has produced a wealth of drawing algorithms. As-
sessing the practical performance of some of these algorithms has been recently
the goal of experimental comparative studies.

In [18] the performance of four planar straight-line drawing algorithms is
compared. The standard deviations in angle size, edge length, and face area are
used to compare the quality of the planar straight-line drawings produced. Since
the experiments are limited to randomly generated maximal planar graphs, this

* Research supported in part by the National Science Foundation under grant CCR-
9423847, by the U.S. Army Research Office under grant DAAH04-96-1-0013, by
ESPRIT LTR of the European Comm~mity under Project no. 20244 (ALCOM-IT),
by the NATO-CNR Advanced Fellowships Programme, and by a gift from Tom
Sawyer Software.

77

work gives only partial insight on the performance of the algorithms on general
planar graphs.

Himsolt [17] presents a comparative study of twelve graph drawing algo-
rithms. The algorithms selected are based on various approaches (e.g., force-
directed, layering, and planarization) and use a variety of graphic standards
(e.g., orthogonal, straight-line, polyline). Only three algorithms draw general
graphs, while the others are specialized for trees, planar graphs, Petri nets, and
graph grammars. The experiments are conducted with the graph drawing sys-
tem GraphEd [17]. Many examples of drawings constructed by the algorithms are
shown, and various objective and subjective evaluations on the aesthetic qual-
ity of the drawings produced are given. However, statistics are provided only
on the edge length, and few details on the experimental setting are provided.
The charts on the edge length have marked oscillations, due to the small size of
the test suite (about 100 graphs). This work provides an excellent overview and
comparison of the main features of some popular drawing algorithms. However,
it does not give detailed statistical results on their performance.

Di Battista et al. [7, 8] present an extensive experimental study comparing
four general-purpose graph drawing algorithms. The four algorithms take as in-
put general undirected graphs and construct orthogonaI grid drawings. The test
graphs are generated from a core set of 112 graphs used in "real-life" software en-
gineering and database applications. The experiments provide a detailed quanti-
tative evaluation of the performance of the four algorithms, and show that they
exhibit trade-offs between "aesthetic" properties (e.g., crossings, bends, edge
length) and running time. The observed practical behavior of the algorithms is
consistent with their theoretical properties.

Brandenburg, Himsolt, and Rohrer [2] compare five "force-directed" algo-
rithms for constructing straight-line drawings of general undirected graphs. The
algorithms are tested on a a wide collection of examples and with different set-
tings of the force parameters. The quality measures evaluated are crossings,
edge length, vertex distribution, and running time. They also identify trade-offs
between the running time and the aesthetic quality of the drawings produced.

J/inger and Mutzel [19] investigate crossing minimization strategies for
straight-line drawings of 2-layer graphs, and compare the performance of eight
popular heuristics for this problem.

In this paper we consider the important class of directed acyclic graphs
(DAGs), and compare the performance of four drawing algorithms specifically
developed for them. DAGs are commonly used to model hierarchical structures
such as PERT diagrams in project planning, class hierarchies in software engi-
neering, and is-a relationships in knowledge representation systems.

The contributions of this work can be summarized as follows:

- We have developed a general experimental setting for comparing the prac-
tical performance of graph drawing algorithms for DAGs. Our setting con-
sists of (i) two large test suites of DAGs, one obtained from the collection
of directed graphs submitted to the e-mail graph drawing service at Bell
Labs [21], and the other randomly generated by a program that simulates a

78

PERT project planner; (ii) a set of quality measures for drawings of DAGs
derived from [7].

- Within our experimental setting, we have performed a comparative study
of four popular drawing algorithms for DAGs: two of them are based on
the layering paradigm [20, 23], while the other two are based on the grid
paradigm [10, 11].

- Our comparison highlights how more than ten years of research in this field
have produced a complex landscape. Namely, the four algorithms exhibit
various trade-offs with respect to the quality measures, and none of them
clearly outperforms the others. The sometimes surprising findings of our
investigations include:

| Some algorithms construct very compact drawings at, the expense of
a relaxed resolution rule that does not consider crossing-crossing and
vertex-crossing distances. Other algorithms produce drawings that dis-
tribute vertices and crossings with great regularity at the expenses of a
larger area requirement.

| Concerning bends, an algorithm with good theoretical worst-case bounds
performs in practice worse than algorithms for which no theoretical
bounds are available.

* Concerning crossings, grid-based algorithms tend to perform worse than
layering-based algorithms, where part of the geometry of the drawing is
decided at the very first step.

. The performance of a drawing algorithm on planar DAGs is not a good
predictor of the performance of the same algorithm on nonplanar DAGs

e Algorithms with a topological foundation tend to distribute the bends
and the lengths of the edges more evenly.

- Our analysis of the performance of the four algorithms has motivated us to
develop a new hybrid strategy for drawing DAGs, which uses a layering-based
method to perform the initial planarization and a grid-based method to
compute the final drawing. The new strategy performs quite well in practice.

The rest of the paper is organized as follows. The four algorithms being com-
pared are described in Section 2. Details on the experimental setting are given in
Section 3. In Section 4, we summarize our experimental results in 14 charts, and
perform a comparative analysis of the performance of the four algorithms. The
new hybrid strategy is described and its performance is discussed in Section 5.
Open problems are addressed in Section 6. Due to space limitations we could
not include all the charts, which appear in a longer version of this paper [6].

2 T h e D r a w i n g A l g o r i t h m s U n d e r E v a l u a t i o n

We have tested four different algorithms for producing drawing of DAGs. Our
main graph drawing tool has been GD W [3], a system for prototyping and testing
graph drawing algorithms.

The four algorithms can be classified into two categories on the basis of their
approach to constructing drawings.

79

layering-Based: These algorithms construct layered drawings, i.e., drawings
where the vertices and edge-bends are placed at integer coordinates on a
set of horizontal layers, and each edge is drawn as a curve monotonically in-
creasing in the y-direction. Note that in such drawings, even though vertices
and edge bends are placed at integer coordinates, the edge crossings can
be arbitrarily close to each other or to the vertices and edge bends. These
algorithms accept as input directed graphs without any particular restric-
tion (the input directed graph can be planar or not, acyclic or cyclic). For
constructing drawings, they generally follow the methodology of Sugiyama
et al. [23], which consists of the following three steps:

Step I Assign vertices to layers heuristically optimizing some criteria, such
as the total edge length.

Step 2 Reduce the crossings among edges by permuting the order of vertices
on each layer.

Step 3 Reduce the number of bends by readjusting the position of vertices
on each layer.

Because of their generality and conceptual simplicity, these algorithms are
very popular among the designers of practical graph drawing systems. Sev-
eral layering-based algorithms have been designed [5]. The above steps have
also been investigated separately, and various heuristics have been proposed
for each of them.
In this paper, we have evaluated and compared the performance of two
layering based algorithms: Dot and Layers.
Dot is a highly optimized algorithm, developed by Koutsofios and North [20]
as a successor to Dag [13, 14]. Dot first constructs a polyline layered drawing
of the input directed graph and then, as a final step, converts the polygonal
chains representing the edges into smooth curves using splines. An implemen-
tation of Dot is available at ftp : / /ftp. research , a r t . com/dist /drawdag/,
and this is the implementation we used. However, since all other algorithms
considered in this study represent edges as polygonal chains, we decided to
analyze the polyline drawing produced by Dot and not the final drawing
with curved lines.
Layers is the original algorithm by Sugiyama, Tagawa and Toda [23]. For
our study we have used the implementation of Layers available in GDW [3].

Grid-Based: These algorithms accept, as input, a planar st-graph, i.e., a planar
DAG with exactly one source and one sink, and construct an upward grid
drawing of it. In an upward grid drawing the vertices, the edge-bends and
the edge-crossings are all placed at integer coordinates, and each edge is
drawn as a curve monotonically increasing in the y-direction. Although the
requirement of having just one source and one sink may appear too restric-
tive, such directed graphs occur in several practical applications, such as
activity planning (where they are called PERT graphs), network flows, etc.
These algorithms are also called numbering-based algorithms because they
typically construct a numbering of the vertices and faces of the planar st-
graph, and compute the coordinates of the vertices and bends using this
numbering.

80

The grid-based algorithms have two advantages: first, their performance on
planar planar st-graphs has been theoretically analyzed, and second, their
running times are usually low. The disadvantage is that a nonplanar DAG
needs to be converted into a planar st-graph, before it can be drawn using
these algorithms. This is done by introducing a fictitious vertex for each
crossing between two edges. These fictitious vertices are assigned a posi-
tion on the grid, but are not represented in the final drawing. The simple
planarization method we have used for our study is the one described in [9].
The grid-based algorithms that we evaluated and compared fall under two
categories:

Visibility Representation-Based: These algorithms use a two-step process for
constructing drawings [10]. In the first step, they construct a visibility
representation of the input planar st-graph. (In a visibility representa-
tion, vertices and edges are represented as horizontal and vertical line-
segments, respectively; two vertices are connected by an edge if and only
if they are visible to each other.) In the second step, they construct a
polyline drawing of the planar st-graph from the visibility representa-
tion; this is done by replacing each vertex-segment with a point and by
approximating each edge-segment with a polygonal line containing at
most two bends.
The visibility representation is constructed using two numberings [12,
24]: a topological numbering of the vertices of the planar st-graph, and a
topological numbering (in the dual graph) of the faces of the planar st-
graph. A topological numbering of a DAG is such that for every directed
edge (u, v), v is assigned a higher number than u.
We have evaluated the performance of an algorithm, called Visibility,
which follows this approach, and of three variations of it, called Bavycen-
trio Visibility, Long Edge Visibility, and Median Visibility. For our study
we have used the implementations of these algorithms available in
GDW[3]. The differences between Algorithms Visibility, Barycentric
Visibility, Long Edge Visibility, and Median Visibility are in the strategy
they use for substituting the vertex- and edge-segments of the inter-
mediate visibility representation with the points and polygonal chains
of the final drawing; they put the vertex in the middle point of the
vertex-segment, in the baryeenter of the endpoints of the incident edge-
segments, on the endpoint of the longest incident edge-segment, and on
the median of the endpoints of the incident edge-segments, respectively.

Poset-Based: These algorithms view planar st-graphs as covering graphs of
partially ordered sets (posets). They exploit the relationship between the
upward planarity of DAGs and the order-theoretic properties of planar
lattices (see, e.g., [16, 22]).
In our study we have evaluated the performance of one poser-based M-
gorithm: the dominance drawing algorithm of [11]. This algorithm corn-
putes two topological numberings of the vertices of the input planar st-

81

graph; one numbering gives the x-coordinates of the vertices and bends,
and the other gives the y-coordinates. These numberings are obtained
by scanning the outgoing edges of each vertex of the planar st-graph in
the left-to-right and the right-to-left order respectively. For this reason,
this algorithm is also known as the left-right algorithm. In this paper we
have referred to this algorithm as Lattice. For our study we have used
the implementation of Lattice available in GDW [3].

3 E x p e r i m e n t a l S e t t i n g

The following quality measures of a drawing of a DAG have been considered:

Area: area of the smallest rectangle with horizontal and vertical sides covering
the drawing;

Cross: total number of edge-crossings;
TotalBends: total number of edge-bends;
TotalEdgeLen: total edge length;
MaxEdgeBends: maximum number of bends on any edge;
MaxEdgeLen: maximum length of any edge;
UnifBends: standard deviation of the number of edge-bends;
UnifLen: standard deviation of the edge length;
Screen Ratio: deviation from the optimal aspect ratio, computed as the difference

between the width/height ratio of the best of the two possible orientations
(portrait and landscape) of the drawing and the standard 4/3 ratio of a
computer screen.

ResFactor: Inverse of the minimum distance between two vertices, or two edge-
crossings, or an edge-crossing and a vertex.

It is widely accepted (see, e.g., [5]) that small values of the above measures are
related to the perceived aesthetic appeal and visual effectiveness of the drawing.

The issue of resolution of a drawing has been extensively studied, moti-
vated by the finite resolution of physical rendering devices. Several papers have
been published about the resolution and the area of drawings of graphs; (see,
e.g., [1, 4, 11, 15]). The resolution of a drawing is defined as the minimum dis-
tance between two vertices. The grid-based algorithms consider edge-bends and
edge-crossings as "dmnmy" vertices for computing the resolution. The layering-
based algorithms, however, do not consider the edge-crossings as dummy ver-
tices for computing the resolution. Since the measures Area, TotalEdgeLen and
MaxEdgeLen of a drawing depend on its resolution, two drawings can be com-
pared for these measures only if they have the same resolution. ResFactor allows
us to scale a drawing D1 produced by a layering-based algorithm so that it has
the same resolution as that of a drawing D2 produced by a grid-based algorithm;
the scaling factor is equal to R1/R2, where R1 and R2 are the value of ResFactor
for D1 and D2 respectively.

The experimental study was performed on two different sets of DAGs, both
with a strong connection to "real-life" applications. We considered two typical

82

contexts where DAGs play a fundamental role, namely software engineering and
project planning.

The first set of test DAGs are what we call the North DAGs. They are
obtained from a collection of directed graphs [21], that North collected at AT&T
Bell Labs by running for two years Draw DA G, an e-mail graph drawing service
that accepts directed graphs formatted as e-mail messages and returns messages
with the corresponding drawings [20].

Originally, the North DAGs consisted of 5114 directed graphs, whose number
of vertices varied in the range 1 ...7602. However, the density of the directed
graphs with a number of vertices that did not fall in the range 10.. . 100 was
very low (see also the statistics in [21]); since such directed graphs represent a
very sparse statistical population we decided to discard them. Then we noted
that many directed graphs were isomorphic; since the vertices of the directed
graphs have labels associated with them, the problem is tractable. For each
isomorphism class, we kept only one representative directed graph. Also, we
deleted the directed graphs where subgraphs were specified as clusters, to be
drawn in their own distinct rectangular region of the layout, because constrained
algorithms are beyond the scope of this study. This filtering left us with 1277
directed graphs.

Still, 491 directed graphs were not connected and this was a problem for run-
ning algorithms implemented in GDW (they assume input directed graphs to be
connected). Instead of discarding the directed graphs, we followed a more prac-
tical approach, by randomly adding a minimum set of directed edges that makes
each directed graph connected. Finally, we made the directed graph acyclic,
where necessary, by applying some heuristics for inverting the direction of a
small subset of edges.

We then ran a first set of experiments and produced the statistics by grouping
the DAGs by number of vertices. Although the comparison among the algorithms
looked consistent (the produced plots never oddly overlapped), each single plot
was not satisfactory, because it showed peaks and valleys. We went back to study
the test suite and observed that grouping them by number of vertices was not the
best approach. In fact, the North DAGs come from very heterogeneous sources,
mainly representing different phases of various software engineering projects; as
a result~ directed graphs with more or less the same number of vertices may be
either very dense or very sparse.

Since most of the analyzed quMity measures strongly depend on the number
of edges of the DAG (e.g. area, number of bends, and number of crossings), we
decided that a better approach was to group the DAGs by number of edges.
After some tests, we clustered the DAGs into nine groups, each with at least 40
DAGs, so that the number of edges in the DAGs belonging to group i, 1 < i < 9,
is in the range 10i.. �9 10i+ 9 (see Fig. 3). The resulting test suite consists of 1158
DAGs, each with edges in the range I0oo .99.

The second set of test DAGs are what we call the Pert DAGs. Although
such DAGs have been randomly generated by one of the facilities of GD W, their
construction is based on refinement operations typical of project planning.

83

First, we generated a set of skeleton planar DAGs consisting of a small num-
ber of vertices to simulate the initial models of the projects. This was done by
randomizing an ear-composition for each DAG. Second, we performed a ran-
dom sequence of typical planning-refinement steps: i.e., expanding an edge into
a series and/or a parallel component and inserting new edges between existing
vertices. The inserted edges represent precedences between activities that were
not captured by the starting skeleton projects.

The resulting test suite contains 813 DAGs with edges in the range 10.. . 150
and vertices in the range 10. . . 100. As for the North DAGs, we grouped the Pert
DAGs by number of edges, so that the number of edges in the DAGs belonging
to group i, 1 < i < 14, is in the range 10 i . . . 10 i+ 9 (see Fig. 3).

The Pert DAGs are generally denser than the North DAGs and they are
single-source single-sink. As shown in the next section, there are some quality
measures for which the relative performance of the algorithms is different for
the North DAGs and the Pert DAGs. Also, the plots obtained for the Pert
DAGs are in general smoother, reflecting the relative uniformity of the statistical
population.

4 A n a l y s i s o f t h e E x p e r i m e n t a l R e s u l t s

Algorithms Dot, Layers, Visibility (with its variations Barycentric Visibility,
Long Edge Visibility, Median Visibility), and Lattice were executed on every
North DAG and every Pert DAG, and the data for all ten quality measures were
collected. Because of the different nature of the two test suites, we compared the
performance of the algorithms for the North DAGs and the Pert DAGs sepa-
rately. In addition, since the quality measures Area, TotalEdgeken, and Ma•
Len depend upon the resolution of the drawings, we compared the layering-based
and grid based algorithms separately for these three quality measures. The other
seven quality measures do not depend upon the resolution, so we compared all
four algorithms together for them. This gave us a total of 28 comparison charts.
Figures 1- 4 display the comparison charts showing the average values for the
quality measures Area, ResFactor, Cross, TotalBends, and ScreenRatio; the left
column of these figures contains the charts for the North DAGs, and the right
column contains the ones for the Pert DAGs. The x-axis of each chart shows
the number of edges. The average is computed over each group of DAGs with
number of edges in the range 10.. . 19, 20. . . 29, etc.

We started the experimental analysis by comparing the behavior of Visibil-
ity and its variations Barycentric Visibility, Long Edge Visibility, and Median
Visibility. As a result, we found that the behavior of the visibility representation-
based algorithms is almost identical for all the quality measures, with Algorithm
Visibility performing slightly better than the others. In order to improve the
readability of the other charts and to simplify the presentation of the experi-
mental results, we have used Algorithm Visibility as the representative visibility
representation-based algorithm.

A
re

a
A

re
a

18
00

0.

16
00

0'

14
00

0"

12
00

0"

c~

O

lO
00

0"

B

8
0

0
0

m

~
"

60
00

.
�9

40
00

.

20
00

.

~-

o
~

lO

e �9

40
0

35
0

(0

30
0

25
0

20
0

O
~

15
0

g
~

lO

O

o~

~
5

0

0

10

14
00

0

2
/

12
00

0
//

//

10
00

0
!

~
d

80

00

r
//

60

00

/

/
40

00

..
.~
v.
 ~

~

~

.

.
A
 .
.
.
.
.
.

~
,
'
"

20
00

-
,

,
-

-

,
,

-
-

,

0

20

30

40

50

60

70

80

90

10
0

A
re

a

18
00

m

i

I
/'

~

" ~

"
~

- 1
#

'/
"

16
00

 -

.I

14
oo

.
./

~

.~

1
2

0
0

�9

.,

-'
~

10

00
.

80
0

�9

60
0

�9

40
0

-

2
0

0

�9

20

30

40

50

60

70

80

90

10
0

I-
-c

--
D

o
t

-=
-

La
yo

r~

2
/

/
/

d
/

/
/

J

f
/

J

j
e

*
~

.
.
A
-

-
~
"

~
4
S
 "
~

.
A

.
.
.
.
.

A
-

~
r
"

.
.
t
*
-

"

~
-

~
.

.
.

..

..
.

A
 .

..
.

10

20

30

40

50

60

70

80

90

10
0

11
0

12
0

13
0

14
0

15
0

[-
~

-.

L
at

ti
ce

-
-,

--
 V

is
lb

il
i~

A
re

a

./

/"

.i
t'

"

10

20

30

40

50

60

70

80

90

10
0

11
0

12
0

13
0

14
0

15
0

--
,-

-D
o

t
-=

-
L

ay
~

--
~

G
O

qa

,

R
es

F
ac

to
r

R
es

F
ac

to
r

5.
0

4
.s

4.
0

L
'~

3.

5

O
~

3.
0

2.
5

~
.

2.
0

1.
5

3 ~

1.
0

0.
5

0.
0

..
..

..

N

0
18

00
0

16
00

0

14
00
0

12
00

0

~{
~

I0
00
0

80
00

O

0q

/
/i
mt
 \

/.

'\

/"

\
/

'/
m-
" -

-

"m
("

/
A
 k

"\
m

20

30

40

50

60

70

80

90

[-
-,

--
" L

at
ti

ce
 ~

D

ot
 -

,-

L
ay

er
s

--
--

. V
is

ib
il

i~

5o

?
45

,I
"

40

/
/

/

35

/I

30

25
10

~

~

20

15

/"

it
"

m
-

r
-"

 ~

j'
.

i
__

~
__

~
-

-~

--
o-

-
-0

5 0

10
0

10

20

30

40

50

60

70

80

90

10
0

1t
0

12
0

13
0

14
0

15
0

V
 ~
.

L
at

ti
ce

 -
--

,-
- D

ot
 -

-
-

L
ay

er
s
-'
-"
 V

is
ib

il
it

y]

A
re

a

A
re

a

60
00

40
00

20
00

 0
 t0

18
00

0

16
00
0

/
ii

14
00
0

I
//

12

00
0

-

~
~

I0
00
0 -

f
JK

80

00
 -

ii

.
/

,~

/
.I

'
"~

60

00
 -

/

..
m m"

m

Z
~

"~

_.
A

40

00
-

~
~

20

00
-

2
0

30

40

50

60

70

80

[-
 -

-.
 L

at
ti

ce
 -

.*
,-

 V
is

ib
il

it
y

~
D

ot
-R

es
F

ac
t

-
B

 -
L

ay
er

s-
R

es
F

ac
t I

,/ / I
:e

/
,f

/"

,J /

"/"

j(
/"

~

Q
Y

"
..

..
 �

9 .
..

.
i
"

~
o
-
-
 ,

,
r
-

.
.
.
.
 A
-
-
-

-
A
 .
.
.
.
.
 A
.

~
~

.
.

�9

~

lb
-'

~
..

.
A

..
..

. ..
..

 �9
 ..

..
.

A
-

9
0

10
0

10

2
0

30

4
0

50

60

70

8
0

90

t0
0

11

0
12

0
13

0
14

0
15

0

] -
 ,

,-
. L

at
ti

ce
 -

- A
--

 V
is

ib
il

it
y

--
4

-
D

ot
-R

es
F

ac
t

-
�9
 -

L
ay

er
s-

R
es

F
ac

t]

i

12
0

(2
3

86

=

=

%\\ 'k. ~ , ~
\ \"

\
X

\

~9

\
\
\
\
~x

xxxxx ~

\
\
\

Fig. 3. Comparison charts: the x-axis shows the number of edges.

o

I

I *g

o

I

T

T
ot

al
B

en
ds

T

ot
al

B
en

ds

50
0

45
o.

40
0

35
0

30
0

,

25
0

'

~
.

20
0,

15
0

.

10
,3

 -

50
-

s, (3

10
 6 5 3

O
'q

2 1 0

10

,,A

._
..

-

,.,
A'

..
..

..
..

..
.

"
_

_
.:

_
_

.7

..
..

.

20

30

40

50

60

7
0

8

0

90

[-
-o

-.
 L

at
ti

ce

~
D

o
t

-�
9

 -

L
ay

er
s

..
..

.
V

is
ib

il
it

y
]

50
0

-
.A

45
0

-
~,

"

40
0

-
. ,

"
A

35

0
A

' "
"

30
0

2
5

0
-

..
..

A
""

.r

-
..

It

20
0

-
.A

,r

"~

15
0

-
..

A

.~

~

IO
0
- ,

.-
--

~
~

~

10
0

10

20

30

40

50

60

70

80

90

10
0

11
0

12
0

13
0

14
0

15
0

[-
~

-L
at

ti
ce

~

D
o

t
-�

9

L
ay

er
s

..
..

.
V

is
ib

il
it

y
[

Sc
re

en
R

at
io

Sc

re
en

R
at

io

zm

1.
8

/
1

.6

./

I
1.

4
if.

,\
.I

/
\

/
1

.2

,
~

N
N

\"

'

"d
 /

1.

0

/
0

,8

'
~

'
~

'
~

'
~

'
~

"

~
"

"'
~

"
0

,4

0.
2

"-
--

--
--

-,
--

--
-,

--
--

,-
--

--
,-

-"

~
--

~

--
-'

*

~
0.

0

20

30

40

50

60

70

80

90

I-
'-

'
L

at
ti

ce

-.
*-

-
D

ot

--

-
L

ay
er

s
- .

,;
.

V
is

ib
it

i~

A

..
A,
-

.A
"

A

..
..

.
A

"

.-
.

,A

.
.

.
.

A

"

10
0

10

20

30

40

50

60

70

80

90

10
0

11
0

]2
0

13
0

14
0

15
0

L-
*-

'
La

tt
ic

e
~

Do
t

-
�9
 -
 L

ay
er

s
-
.A

..
 V
is

ib
il

it
y
[

C
O

"-

,I

88

The analysis of the performance of the four algorithms for each quality mea-
sure, and for each set of input DAGs is summarized below:

Area: (see Fig. 1) Dot performs better than Layers, and Lattice performs better
than Visibility for both the North DAGs and the Pert DAGs. While for the
North DAGs, the plots grow linearly for #edges in the range 10.. .60, for
the Pert DAGs they show quadratic growth in the entire range. Also observe
that the difference in the performance of the two grid-based algorithms is
significant for DAGs with more than 75 edges, whereas the two layering-
based algorithms perform about the same in the entire range.

ResFactor: (see Fig. 2) Not surprisingly, ResFactor is equal to one for the grid-
based algorithms in the entire range. On the other hand, the layering-based
algorithms tend to have a non-constant ResFactor. This reflects the fact that
they do not take edge-crossings into consideration for defining the resolu-
tion. The bottom charts of Fig. 2 show a comparative study of the area of
the drawings produced by the four algorithms. Unlike the bottom charts of
Fig. 1, the plots for the two layering-based algorithms now take ResFactor
into account. Note that they are comparable with the plots of the grid-based
algorithms.

Cross: (see Fig. 3) Since Lattice and Visibility use the same planarizer, the draw-
ings produced by them have the same number of edge-crossings. All the al-
gorithms have quadratic behavior for both sets of DAGs. Dot has the best
performance among the four. The difference between the performance of the
layering-based and the grid-based algorithms reduces considerably for the
Pert DAGs. Also observe that the slope of the plots is steeper for the Pert
DAGs. This reflects the fact that the Pert DAGs are i~ general denser than
the North DAGs and that the number of edge-crossings tend to increase with
the ratio #edges/#vertiees.

TotalBends: (see Fig. 4) The performance of Visibility is unsatisfactory. For the
North DAGs, the plots of the other three algorithms grow almost linearly for
#edges up to 65. After that, Dot is clearly the best. The experimentation
with the Pert DAGs produced a surprising result. Namely, Lattice outper-
forms the layering-based algorithms while Visibility has still the worst be-
havior. As for measure Cross, the slope of the plots is steeper for the Pert
DAGs. Note, however, that the behavior of Lattice seems to be quite inde-
pendent from the density of the input DAG, at least for DAGs with up to
75 edges~

SereenRatio: (see Fig. 4) Lattice seems to be the algorithm of choice with respect
to this quality measure. All the algorithms have a better performance for the
Pert DAGs. We believe that this a consequence of the relative density of the
Pert DAGs; the drawings tend to spread in both the z- and ?j-dimension.

TotalEdgeLen and MaxEdgeLen: These two measures are dependent on ResFac-
tot. Therefore, we compared the performance of the layering-based and grid-
based algorithms separately. Dot performs better than Layers, and Visibility
performs better than Lattice for both the North DAGs and the Pert DAGs.

MaxEdgeBends: Quite interestingly, the plots grow linearly for the Pert DAGs

89

for all four algorithms. While Dot has the best performance :%r the North
DAGs, Lattice is the best for the Pert DAGs. The overall performance of
the algorithms is much better for the North DAGs than for the Pert DAGs.
Again, we believe that this is because the North DAGs are in general sparser.

5 C r o s s - F e r t i l i z a t i o n o f G r i d - a n d L a y e r i n g - B a s e d

A l g o r i t h m s

The analysis of the experimental results of Dot, Layers, Visibility, and Lattice
clearly shows that the layering-based algorithms (Dot and Layers) produce draw-
ings with fewer crossings than the grid-based algorithms (Visibility and Lattice).
This indicates that the crossing reduction step of the layering-based algorithms
is more effective than the simple planarization strategy [9] used in Visibility and
Lattice. On the other hand, Visibility and Lattice perform well with respect to
other quality measures (see Section 4).

The above considerations suggest the development of a hybrid strategy that
substitutes the original planarization step of Visibility and Lattice with the cross-
ing reduction step of Layers (we choose Layers over Dot for simplicity of imple-
mentation). More specifically, we first execute the crossing reduction step of
Layers and then visit the resulting drawing, replacing each crossing with a ficti-
tious vertex. This planarizes the input graph. Finally, we execute the remaining
algorithmic steps of Visibility and Lattice. The new drawing algorithms so ob-
tained will be called VisibilityLayers and LatticeLayers, respectively.

Algorithms VisibilityLayers and LatticeLayers always perform better than
their "parent algorithms" Visibility and Lattice, respectively. In particular, we
observe the following:

Area: The improvement of VisibilityLayers and LatticeLayers over Visibility and
Lattice is especially significant for the North DAGs, where it ranges between
30% and 50%.

TotalBends: Again, the improvement is especially significant (about 50%) for the
North DAGs. Also, while Layers is always better than Lattice, we have that
LatticeLayers is slightly better than Layers for the North DAGs with more
than 70 edges.

MaxgdgeBends: Analogous considerations to those for TotaIBends apply. Also,
the improvement of VisibilityLayers over Visibility is substantial.

The analysis of the other quality measures shows similar trends.
We conclude this section by observing that the performance of the grid-

based algorithms (Visibility and Lattice) is strongly influenced by the number of
crossings introduced in the planarization step.

6 O p e n P r o b l e m s

Our experiments lead to many interesting theoretical and practical questions:

90

- The angular resolution of a drawing is the magnitude of the smallest angle
between any two edges incident on a vertex. The readability of a drawing can
be improved by increasing its angular resolution. Unfortunately, not much
is known either theoretically or empirically about the angular resolution of
drawings of directed graphs. This issue is worth exploring.

- Dot in a final step converts the polylines into Bezier curves using splines.
This has a dramatic impact on the quality of the drawing. Similarly, we
believe that the performance of several algorithms, such as Visibility, can be
improved by a postprocessing "beautification" step. For example, it would
be interesting to study bend-stretching techniques [25] that reduce the bends
by doing local transformations.

- Similarly, the role of the preprocessing step should also be studied. In par-
ticular, the performance of grid-based algorithms can be improved by using
a more sophisticated planarizer.

Acknowledgements

We are grateful to Stephen North for many discussions about Dot and the col-
lection of directed graphs. We thank Petra Mutzel for answering our questions
about the statistics on such graphs. Finally we thank Paola Vocca for her en-
couragement during the writing of this paper.

References

1. P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. How to
draw a series-parallel digraph. Internat. Y. Comput. Geom. Appl., 4:385-402, 1994.

2. F. J. Brandenburg, M. Himsolt, and C. Rohrer. An experimental comparison of
force-directed and randomized graph drawing algorithms. In F. J. Brandenburg,
editor, Graph Drawing (Proc. GD '95)~ volume 1027 of Lecture Notes in Computer
Science, pages 76-87. Springer-Ver]ag, 1996.

3. L. Buti, G. Di Battista, G. Liotta, E. Tassinari, F. Vargiu, and L. Vismara. GD-
Workbench: A system for prototyping and testing graph drawing algorithms. In
F. J. Brandenburg, editor, Graph Drawing (Proc. GD '95), volume 1027 of LNCS,
pages 111-122. Springer-Verlag, 1996.

4. M. Chrobak, M. T. Goodrich~ and R. Tamassia. Convex drawings of graphs in two
and three dimensions. In Proc. 12th Annuo ACM Sympos. Comput. Geom., pages
319-328, 1996.

5. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: An annotated bibliography. Comput. Geom. Theory AppL, 4:235-282,
1994.

6. G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia~ E. Tassinari,
F. Vargiu, and L. Vismara. Drawing directed graphs: An experimental study.
Technical Report CS-96-24, Center for Geometric Computing, Dept. Computer
Science, Brown Univ., 1996. f tp : / / f tp .cs .b ro~m.odu/pub / tochropor t s /96 /
cs96-24.ps.Z.

91

7. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An
experimental comparison of three graph drawing algorithms. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 306-315, 1995.

8. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu.
An experimental comparison of four graph drawing algorithms. Comput.
Geom. Theory Appl., 1996 (to appear), h t tp ://www. zs.brown, edu/cgc/papars/
dglttv-ecfgd-96, ps. gz.

9. G. Di Battista, E. Pietrosanti, R. Tamassia, and I. G. TolIis. Automatic layout
of PERT diagrams with XPERT. In Proc. IEEE Workshop on Visual Languages
(VL'89), pages 171-176, 1989.

10. G. Di Battista and R. Tamassia. Algorithms for plane representations of acycfie
digraphs. Theoret. Comput. Sci., 61:175-198, 1988.

11. G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry
display of planar upward drawings. Discrete Comput. Geom., 7:381-401, 1992.

12. G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibifity representa-
tions of graphs. Inform. Process. Lett., 41:1-7, 1992.

13. E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for drawing
directed graphs. IEEE Trans. Softw. Eng., 19:214-230, 1993.

14. E. R. Gansner, S. C. North, and K. P. Vo. DAG - A program that draws directed
graphs. Softw. -Pract. Exp., 18(11):1047-1062, 1988.

15. A. Garg and R. Tamassia. Planar drawings and angular resolution: Algorithms
and bounds. In J. vail Leeuwen, editor, Algorithms (Proc. ESA '9~), volume 855
of Lecture Notes in Computer Science, pages 12-23. Springer-Verlag, 1994.

16. A. Garg and R. Tamassia. Upward planarity testing. Order, 12:109-133, 1995.
17. M. Himsolt. Comparing and evaluating layout algorithms within GraphEd. J.

Visual Lang. Comput., 6(3), 1995. (Special Issue on Graph Visualization, I. F.
Cruz and P. Eades, editors).

18. S. Jones, P. Eades~ A. Moran, N. Ward, G. Delott, and R. Tamassia. A note on
planar graph drawing algorithms. Technical Report 216, Department of Computer
Science, University of Queensland, 1991.

19. M. Jiinger and P. Mutzel. Exact and heuristic algorithms for 2-layer straightline
crossing minimization. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD
'95), volume 1027 of Lecture Notes in Computer Science, pages 337-348. Springer-
Verlag, 1996.

20. E. Koutsofios and S. North. Drawing graphs with dot, 1993. dot user's manual.
ftp ://ftp .research. art. com/dist/drawdag/.

21. S. North. 5114 directed graphs, 1995. Manuscript. ftp ://ftp. research, art. corn/
dist/drawdag/.

22. I. Rival. Reading, drawing, and order. In I. G. Rosenberg and G. Sabidussi, edi-
tors, Algebras and Orders, pages 359-404. Kluwer Academic Publishers, 1993.

23. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109-125, 1981.

24. R. Tamassia and I. G. Tollis. A unified approach to visibility representations of
planar graphs. Discrete Comput. Geom., 1(4):321-341, 1986.

25. R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE Trans.
Circuits Syst., CAS-36(9):1230-1234, 1989.

