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Abstract .  In tiffs paper we consider the class of directed acyclic graphs 
(DAGs), and present the results of an experimental study on four draw- 
ing algorithms specifically developed for DAGs. Our study is conducted 
on two large test suites of DAGs and yields more than 30 charts compar- 
ing the performance of the drawing algorithms with respect to several 
quality measures, including area, crossings, bends, and aspect ratio. The 
algorithms exhibit various trade-offs with respect to the quality mea- 
sures, and none of them clearly outperforms the others. 

1 I n t r o d u c t i o n  

Over a decade of research in the graph drawing area, motivated by applications 
to information visualization, has produced a wealth of drawing algorithms. As- 
sessing the practical performance of some of these algorithms has been recently 
the goal of experimental comparative studies. 

In [18] the performance of four planar straight-line drawing algorithms is 
compared. The standard deviations in angle size, edge length, and face area are 
used to compare the quality of the planar straight-line drawings produced. Since 
the experiments are limited to randomly generated maximal planar graphs, this 
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work gives only partial insight on the performance of the algorithms on general 
planar graphs. 

Himsolt [17] presents a comparative study of twelve graph drawing algo- 
rithms. The algorithms selected are based on various approaches (e.g., force- 
directed, layering, and planarization) and use a variety of graphic standards 
(e.g., orthogonal, straight-line, polyline). Only three algorithms draw general 
graphs, while the others are specialized for trees, planar graphs, Petri nets, and 
graph grammars. The experiments are conducted with the graph drawing sys- 
tem GraphEd [17]. Many examples of drawings constructed by the algorithms are 
shown, and various objective and subjective evaluations on the aesthetic qual- 
ity of the drawings produced are given. However, statistics are provided only 
on the edge length, and few details on the experimental setting are provided. 
The charts on the edge length have marked oscillations, due to the small size of 
the test suite (about 100 graphs). This work provides an excellent overview and 
comparison of the main features of some popular drawing algorithms. However, 
it does not give detailed statistical results on their performance. 

Di Battista et al. [7, 8] present an extensive experimental study comparing 
four general-purpose graph drawing algorithms. The four algorithms take as in- 
put general undirected graphs and construct orthogonaI grid drawings. The test 
graphs are generated from a core set of 112 graphs used in "real-life" software en- 
gineering and database applications. The experiments provide a detailed quanti- 
tative evaluation of the performance of the four algorithms, and show that they 
exhibit trade-offs between "aesthetic" properties (e.g., crossings, bends, edge 
length) and running time. The observed practical behavior of the algorithms is 
consistent with their theoretical properties. 

Brandenburg, Himsolt, and Rohrer [2] compare five "force-directed" algo- 
rithms for constructing straight-line drawings of general undirected graphs. The 
algorithms are tested on a a wide collection of examples and with different set- 
tings of the force parameters. The quality measures evaluated are crossings, 
edge length, vertex distribution, and running time. They also identify trade-offs 
between the running time and the aesthetic quality of the drawings produced. 

J/inger and Mutzel [19] investigate crossing minimization strategies for 
straight-line drawings of 2-layer graphs, and compare the performance of eight 
popular heuristics for this problem. 

In this paper we consider the important class of directed acyclic graphs 
(DAGs), and compare the performance of four drawing algorithms specifically 
developed for them. DAGs are commonly used to model hierarchical structures 
such as PERT diagrams in project planning, class hierarchies in software engi- 
neering, and is-a relationships in knowledge representation systems. 

The contributions of this work can be summarized as follows: 

- We have developed a general experimental setting for comparing the prac- 
tical performance of graph drawing algorithms for DAGs. Our setting con- 
sists of (i) two large test suites of DAGs, one obtained from the collection 
of directed graphs submitted to the e-mail graph drawing service at Bell 
Labs [21], and the other randomly generated by a program that simulates a 
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PERT project planner; (ii) a set of quality measures for drawings of DAGs 
derived from [7]. 

- Within our experimental setting, we have performed a comparative study 
of four popular drawing algorithms for DAGs: two of them are based on 
the layering paradigm [20, 23], while the other two are based on the grid 
paradigm [10, 11]. 

- Our comparison highlights how more than ten years of research in this field 
have produced a complex landscape. Namely, the four algorithms exhibit 
various trade-offs with respect to the quality measures, and none of them 
clearly outperforms the others. The sometimes surprising findings of our 
investigations include: 

| Some algorithms construct very compact drawings at, the expense of 
a relaxed resolution rule that does not consider crossing-crossing and 
vertex-crossing distances. Other algorithms produce drawings that dis- 
tribute vertices and crossings with great regularity at the expenses of a 
larger area requirement. 

| Concerning bends, an algorithm with good theoretical worst-case bounds 
performs in practice worse than algorithms for which no theoretical 
bounds are available. 

* Concerning crossings, grid-based algorithms tend to perform worse than 
layering-based algorithms, where part of the geometry of the drawing is 
decided at the very first step. 

. The performance of a drawing algorithm on planar DAGs is not a good 
predictor of the performance of the same algorithm on nonplanar DAGs 

e Algorithms with a topological foundation tend to distribute the bends 
and the lengths of the edges more evenly. 

- Our analysis of the performance of the four algorithms has motivated us to 
develop a new hybrid strategy for drawing DAGs, which uses a layering-based 
method to perform the initial planarization and a grid-based method to 
compute the final drawing. The new strategy performs quite well in practice. 

The rest of the paper is organized as follows. The four algorithms being com- 
pared are described in Section 2. Details on the experimental setting are given in 
Section 3. In Section 4, we summarize our experimental results in 14 charts, and 
perform a comparative analysis of the performance of the four algorithms. The 
new hybrid strategy is described and its performance is discussed in Section 5. 
Open problems are addressed in Section 6. Due to space limitations we could 
not include all the charts, which appear in a longer version of this paper [6]. 

2 T h e  D r a w i n g  A l g o r i t h m s  U n d e r  E v a l u a t i o n  

We have tested four different algorithms for producing drawing of DAGs. Our 
main graph drawing tool has been GD W [3], a system for prototyping and testing 
graph drawing algorithms. 

The four algorithms can be classified into two categories on the basis of their 
approach to constructing drawings. 



79 

layering-Based: These algorithms construct layered drawings, i.e., drawings 
where the vertices and edge-bends are placed at integer coordinates on a 
set of horizontal layers, and each edge is drawn as a curve monotonically in- 
creasing in the y-direction. Note that in such drawings, even though vertices 
and edge bends are placed at integer coordinates, the edge crossings can 
be arbitrarily close to each other or to the vertices and edge bends. These 
algorithms accept as input directed graphs without any particular restric- 
tion (the input directed graph can be planar or not, acyclic or cyclic). For 
constructing drawings, they generally follow the methodology of Sugiyama 
et al. [23], which consists of the following three steps: 

Step I Assign vertices to layers heuristically optimizing some criteria, such 
as the total edge length. 

Step 2 Reduce the crossings among edges by permuting the order of vertices 
on each layer. 

Step 3 Reduce the number of bends by readjusting the position of vertices 
on each layer. 

Because of their generality and conceptual simplicity, these algorithms are 
very popular among the designers of practical graph drawing systems. Sev- 
eral layering-based algorithms have been designed [5]. The above steps have 
also been investigated separately, and various heuristics have been proposed 
for each of them. 
In this paper, we have evaluated and compared the performance of two 
layering based algorithms: Dot and Layers. 
Dot is a highly optimized algorithm, developed by Koutsofios and North [20] 
as a successor to Dag [13, 14]. Dot first constructs a polyline layered drawing 
of the input directed graph and then, as a final step, converts the polygonal 
chains representing the edges into smooth curves using splines. An implemen- 
tation of Dot is available at ftp : / /ftp.  research ,  a r t .  com/dist /drawdag/,  
and this is the implementation we used. However, since all other algorithms 
considered in this study represent edges as polygonal chains, we decided to 
analyze the polyline drawing produced by Dot and not the final drawing 
with curved lines. 
Layers is the original algorithm by Sugiyama, Tagawa and Toda [23]. For 
our study we have used the implementation of Layers available in GDW [3]. 

Grid-Based: These algorithms accept, as input, a planar st-graph, i.e., a planar 
DAG with exactly one source and one sink, and construct an upward grid 
drawing of it. In an upward grid drawing the vertices, the edge-bends and 
the edge-crossings are all placed at integer coordinates, and each edge is 
drawn as a curve monotonically increasing in the y-direction. Although the 
requirement of having just one source and one sink may appear too restric- 
tive, such directed graphs occur in several practical applications, such as 
activity planning (where they are called PERT graphs), network flows, etc. 
These algorithms are also called numbering-based algorithms because they 
typically construct a numbering of the vertices and faces of the planar st- 
graph, and compute the coordinates of the vertices and bends using this 
numbering. 
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The grid-based algorithms have two advantages: first, their performance on 
planar planar st-graphs has been theoretically analyzed, and second, their 
running times are usually low. The disadvantage is that a nonplanar DAG 
needs to be converted into a planar st-graph, before it can be drawn using 
these algorithms. This is done by introducing a fictitious vertex for each 
crossing between two edges. These fictitious vertices are assigned a posi- 
tion on the grid, but are not represented in the final drawing. The simple 
planarization method we have used for our study is the one described in [9]. 
The grid-based algorithms that we evaluated and compared fall under two 
categories: 

Visibility Representation-Based: These algorithms use a two-step process for 
constructing drawings [10]. In the first step, they construct a visibility 
representation of the input planar st-graph. (In a visibility representa- 
tion, vertices and edges are represented as horizontal and vertical line- 
segments, respectively; two vertices are connected by an edge if and only 
if they are visible to each other.) In the second step, they construct a 
polyline drawing of the planar st-graph from the visibility representa- 
tion; this is done by replacing each vertex-segment with a point and by 
approximating each edge-segment with a polygonal line containing at 
most two bends. 
The visibility representation is constructed using two numberings [12, 
24]: a topological numbering of the vertices of the planar st-graph, and a 
topological numbering (in the dual graph) of the faces of the planar st- 
graph. A topological numbering of a DAG is such that for every directed 
edge (u, v), v is assigned a higher number than u. 
We have evaluated the performance of an algorithm, called Visibility, 
which follows this approach, and of three variations of it, called Bavycen- 
trio Visibility, Long Edge Visibility, and Median Visibility. For our study 
we have used the implementations of these algorithms available in 
GDW[3]. The differences between Algorithms Visibility, Barycentric 
Visibility, Long Edge Visibility, and Median Visibility are in the strategy 
they use for substituting the vertex- and edge-segments of the inter- 
mediate visibility representation with the points and polygonal chains 
of the final drawing; they put the vertex in the middle point of the 
vertex-segment, in the baryeenter of the endpoints of the incident edge- 
segments, on the endpoint of the longest incident edge-segment, and on 
the median of the endpoints of the incident edge-segments, respectively. 

Poset-Based: These algorithms view planar st-graphs as covering graphs of 
partially ordered sets (posets). They exploit the relationship between the 
upward planarity of DAGs and the order-theoretic properties of planar 
lattices (see, e.g., [16, 22]). 
In our study we have evaluated the performance of one poser-based M- 
gorithm: the dominance drawing algorithm of [11]. This algorithm corn- 
putes two topological numberings of the vertices of the input planar st- 
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graph; one numbering gives the x-coordinates of the vertices and bends, 
and the other gives the y-coordinates. These numberings are obtained 
by scanning the outgoing edges of each vertex of the planar st-graph in 
the left-to-right and the right-to-left order respectively. For this reason, 
this algorithm is also known as the left-right algorithm. In this paper we 
have referred to this algorithm as Lattice. For our study we have used 
the implementation of Lattice available in GDW [3]. 

3 E x p e r i m e n t a l  S e t t i n g  

The following quality measures of a drawing of a DAG have been considered: 

Area: area of the smallest rectangle with horizontal and vertical sides covering 
the drawing; 

Cross: total number of edge-crossings; 
TotalBends: total number of edge-bends; 
TotalEdgeLen: total edge length; 
MaxEdgeBends: maximum number of bends on any edge; 
MaxEdgeLen: maximum length of any edge; 
UnifBends: standard deviation of the number of edge-bends; 
UnifLen: standard deviation of the edge length; 
Screen Ratio: deviation from the optimal aspect ratio, computed as the difference 

between the width/height ratio of the best of the two possible orientations 
(portrait and landscape) of the drawing and the standard 4/3 ratio of a 
computer screen. 

ResFactor: Inverse of the minimum distance between two vertices, or two edge- 
crossings, or an edge-crossing and a vertex. 

It is widely accepted (see, e.g., [5]) that small values of the above measures are 
related to the perceived aesthetic appeal and visual effectiveness of the drawing. 

The issue of resolution of a drawing has been extensively studied, moti- 
vated by the finite resolution of physical rendering devices. Several papers have 
been published about the resolution and the area of drawings of graphs; (see, 
e.g., [1, 4, 11, 15]). The resolution of a drawing is defined as the minimum dis- 
tance between two vertices. The grid-based algorithms consider edge-bends and 
edge-crossings as "dmnmy" vertices for computing the resolution. The layering- 
based algorithms, however, do not consider the edge-crossings as dummy ver- 
tices for computing the resolution. Since the measures Area, TotalEdgeLen and 
MaxEdgeLen of a drawing depend on its resolution, two drawings can be com- 
pared for these measures only if they have the same resolution. ResFactor allows 
us to scale a drawing D1 produced by a layering-based algorithm so that it has 
the same resolution as that of a drawing D2 produced by a grid-based algorithm; 
the scaling factor is equal to R1/R2, where R1 and R2 are the value of ResFactor 
for D1 and D2 respectively. 

The experimental study was performed on two different sets of DAGs, both 
with a strong connection to "real-life" applications. We considered two typical 
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contexts where DAGs play a fundamental role, namely software engineering and 
project planning. 

The first set of test DAGs are what we call the North DAGs. They are 
obtained from a collection of directed graphs [21], that North collected at AT&T 
Bell Labs by running for two years Draw DA G, an e-mail graph drawing service 
that accepts directed graphs formatted as e-mail messages and returns messages 
with the corresponding drawings [20]. 

Originally, the North DAGs consisted of 5114 directed graphs, whose number 
of vertices varied in the range 1 ...7602. However, the density of the directed 
graphs with a number of vertices that did not fall in the range 10.. .  100 was 
very low (see also the statistics in [21]); since such directed graphs represent a 
very sparse statistical population we decided to discard them. Then we noted 
that many directed graphs were isomorphic; since the vertices of the directed 
graphs have labels associated with them, the problem is tractable. For each 
isomorphism class, we kept only one representative directed graph. Also, we 
deleted the directed graphs where subgraphs were specified as clusters, to be 
drawn in their own distinct rectangular region of the layout, because constrained 
algorithms are beyond the scope of this study. This filtering left us with 1277 
directed graphs. 

Still, 491 directed graphs were not connected and this was a problem for run- 
ning algorithms implemented in GDW (they assume input directed graphs to be 
connected). Instead of discarding the directed graphs, we followed a more prac- 
tical approach, by randomly adding a minimum set of directed edges that makes 
each directed graph connected. Finally, we made the directed graph acyclic, 
where necessary, by applying some heuristics for inverting the direction of a 
small subset of edges. 

We then ran a first set of experiments and produced the statistics by grouping 
the DAGs by number of vertices. Although the comparison among the algorithms 
looked consistent (the produced plots never oddly overlapped), each single plot 
was not satisfactory, because it showed peaks and valleys. We went back to study 
the test suite and observed that grouping them by number of vertices was not the 
best approach. In fact, the North DAGs come from very heterogeneous sources, 
mainly representing different phases of various software engineering projects; as 
a result~ directed graphs with more or less the same number of vertices may be 
either very dense or very sparse. 

Since most of the analyzed quMity measures strongly depend on the number 
of edges of the DAG (e.g. area, number of bends, and number of crossings), we 
decided that a better approach was to group the DAGs by number of edges. 
After some tests, we clustered the DAGs into nine groups, each with at least 40 
DAGs, so that the number of edges in the DAGs belonging to group i, 1 < i < 9, 
is in the range 10i.. �9 10i+ 9 (see Fig. 3). The resulting test suite consists of 1158 
DAGs, each with edges in the range I0oo .99. 

The second set of test DAGs are what we call the Pert DAGs. Although 
such DAGs have been randomly generated by one of the facilities of GD W, their 
construction is based on refinement operations typical of project planning. 
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First, we generated a set of skeleton planar DAGs consisting of a small num- 
ber of vertices to simulate the initial models of the projects. This was done by 
randomizing an ear-composition for each DAG. Second, we performed a ran- 
dom sequence of typical planning-refinement steps: i.e., expanding an edge into 
a series and/or a parallel component and inserting new edges between existing 
vertices. The inserted edges represent precedences between activities that were 
not captured by the starting skeleton projects. 

The resulting test suite contains 813 DAGs with edges in the range 10.. .  150 
and vertices in the range 10. . .  100. As for the North DAGs, we grouped the Pert 
DAGs by number of edges, so that the number of edges in the DAGs belonging 
to group i, 1 < i < 14, is in the range 10 i . . . 10 i+  9 (see Fig. 3). 

The Pert DAGs are generally denser than the North DAGs and they are 
single-source single-sink. As shown in the next section, there are some quality 
measures for which the relative performance of the algorithms is different for 
the North DAGs and the Pert DAGs. Also, the plots obtained for the Pert 
DAGs are in general smoother, reflecting the relative uniformity of the statistical 
population. 

4 A n a l y s i s  o f  t h e  E x p e r i m e n t a l  R e s u l t s  

Algorithms Dot, Layers, Visibility (with its variations Barycentric Visibility, 
Long Edge Visibility, Median Visibility), and Lattice were executed on every 
North DAG and every Pert DAG, and the data for all ten quality measures were 
collected. Because of the different nature of the two test suites, we compared the 
performance of the algorithms for the North DAGs and the Pert DAGs sepa- 
rately. In addition, since the quality measures Area, TotalEdgeken, and Ma• 
Len depend upon the resolution of the drawings, we compared the layering-based 
and grid based algorithms separately for these three quality measures. The other 
seven quality measures do not depend upon the resolution, so we compared all 
four algorithms together for them. This gave us a total of 28 comparison charts. 
Figures 1- 4 display the comparison charts showing the average values for the 
quality measures Area, ResFactor, Cross, TotalBends, and ScreenRatio; the left 
column of these figures contains the charts for the North DAGs, and the right 
column contains the ones for the Pert DAGs. The x-axis of each chart shows 
the number of edges. The average is computed over each group of DAGs with 
number of edges in the range 10.. .  19, 20. . .  29, etc. 

We started the experimental analysis by comparing the behavior of Visibil- 
ity and its variations Barycentric Visibility, Long Edge Visibility, and Median 
Visibility. As a result, we found that the behavior of the visibility representation- 
based algorithms is almost identical for all the quality measures, with Algorithm 
Visibility performing slightly better than the others. In order to improve the 
readability of the other charts and to simplify the presentation of the experi- 
mental results, we have used Algorithm Visibility as the representative visibility 
representation-based algorithm. 
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Fig. 3. Comparison charts: the x-axis shows the number of edges. 
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The analysis of the performance of the four algorithms for each quality mea- 
sure, and for each set of input DAGs is summarized below: 

Area: (see Fig. 1) Dot performs better than Layers, and Lattice performs better 
than Visibility for both the North DAGs and the Pert DAGs. While for the 
North DAGs, the plots grow linearly for #edges in the range 10.. .60, for 
the Pert DAGs they show quadratic growth in the entire range. Also observe 
that the difference in the performance of the two grid-based algorithms is 
significant for DAGs with more than 75 edges, whereas the two layering- 
based algorithms perform about the same in the entire range. 

ResFactor: (see Fig. 2) Not surprisingly, ResFactor is equal to one for the grid- 
based algorithms in the entire range. On the other hand, the layering-based 
algorithms tend to have a non-constant ResFactor. This reflects the fact that 
they do not take edge-crossings into consideration for defining the resolu- 
tion. The bottom charts of Fig. 2 show a comparative study of the area of 
the drawings produced by the four algorithms. Unlike the bottom charts of 
Fig. 1, the plots for the two layering-based algorithms now take ResFactor 
into account. Note that they are comparable with the plots of the grid-based 
algorithms. 

Cross: (see Fig. 3) Since Lattice and Visibility use the same planarizer, the draw- 
ings produced by them have the same number of edge-crossings. All the al- 
gorithms have quadratic behavior for both sets of DAGs. Dot has the best 
performance among the four. The difference between the performance of the 
layering-based and the grid-based algorithms reduces considerably for the 
Pert DAGs. Also observe that the slope of the plots is steeper for the Pert 
DAGs. This reflects the fact that the Pert DAGs are i~ general denser than 
the North DAGs and that the number of edge-crossings tend to increase with 
the ratio #edges/#vertiees. 

TotalBends: (see Fig. 4) The performance of Visibility is unsatisfactory. For the 
North DAGs, the plots of the other three algorithms grow almost linearly for 
#edges up to 65. After that, Dot is clearly the best. The experimentation 
with the Pert DAGs produced a surprising result. Namely, Lattice outper- 
forms the layering-based algorithms while Visibility has still the worst be- 
havior. As for measure Cross, the slope of the plots is steeper for the Pert 
DAGs. Note, however, that the behavior of Lattice seems to be quite inde- 
pendent from the density of the input DAG, at least for DAGs with up to 
75 edges~ 

SereenRatio: (see Fig. 4) Lattice seems to be the algorithm of choice with respect 
to this quality measure. All the algorithms have a better performance for the 
Pert DAGs. We believe that this a consequence of the relative density of the 
Pert DAGs; the drawings tend to spread in both the z- and ?j-dimension. 

TotalEdgeLen and MaxEdgeLen: These two measures are dependent on ResFac- 
tot. Therefore, we compared the performance of the layering-based and grid- 
based algorithms separately. Dot performs better than Layers, and Visibility 
performs better than Lattice for both the North DAGs and the Pert DAGs. 

MaxEdgeBends: Quite interestingly, the plots grow linearly for the Pert DAGs 
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for all four algorithms. While Dot has the best performance :%r the North 
DAGs, Lattice is the best for the Pert DAGs. The overall performance of 
the algorithms is much better for the North DAGs than for the Pert DAGs. 
Again, we believe that this is because the North DAGs are in general sparser. 

5 C r o s s - F e r t i l i z a t i o n  o f  G r i d -  a n d  L a y e r i n g - B a s e d  

A l g o r i t h m s  

The analysis of the experimental results of Dot, Layers, Visibility, and Lattice 
clearly shows that the layering-based algorithms (Dot and Layers) produce draw- 
ings with fewer crossings than the grid-based algorithms ( Visibility and Lattice). 
This indicates that the crossing reduction step of the layering-based algorithms 
is more effective than the simple planarization strategy [9] used in Visibility and 
Lattice. On the other hand, Visibility and Lattice perform well with respect to 
other quality measures (see Section 4). 

The above considerations suggest the development of a hybrid strategy that 
substitutes the original planarization step of Visibility and Lattice with the cross- 
ing reduction step of Layers (we choose Layers over Dot for simplicity of imple- 
mentation). More specifically, we first execute the crossing reduction step of 
Layers and then visit the resulting drawing, replacing each crossing with a ficti- 
tious vertex. This planarizes the input graph. Finally, we execute the remaining 
algorithmic steps of Visibility and Lattice. The new drawing algorithms so ob- 
tained will be called VisibilityLayers and LatticeLayers, respectively. 

Algorithms VisibilityLayers and LatticeLayers always perform better than 
their "parent algorithms" Visibility and Lattice, respectively. In particular, we 
observe the following: 

Area: The improvement of VisibilityLayers and LatticeLayers over Visibility and 
Lattice is especially significant for the North DAGs, where it ranges between 
30% and 50%. 

TotalBends: Again, the improvement is especially significant (about 50%) for the 
North DAGs. Also, while Layers is always better than Lattice, we have that 
LatticeLayers is slightly better than Layers for the North DAGs with more 
than 70 edges. 

MaxgdgeBends: Analogous considerations to those for TotaIBends apply. Also, 
the improvement of VisibilityLayers over Visibility is substantial. 

The analysis of the other quality measures shows similar trends. 
We conclude this section by observing that the performance of the grid- 

based algorithms ( Visibility and Lattice) is strongly influenced by the number of 
crossings introduced in the planarization step. 

6 O p e n  P r o b l e m s  

Our experiments lead to many interesting theoretical and practical questions: 
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- The angular resolution of a drawing is the magnitude of the smallest angle 
between any two edges incident on a vertex. The readability of a drawing can 
be improved by increasing its angular resolution. Unfortunately, not much 
is known either theoretically or empirically about the angular resolution of 
drawings of directed graphs. This issue is worth exploring. 

- Dot in a final step converts the polylines into Bezier curves using splines. 
This has a dramatic impact on the quality of the drawing. Similarly, we 
believe that  the performance of several algorithms, such as Visibility, can be 
improved by a postprocessing "beautification" step. For example, it would 
be interesting to study bend-stretching techniques [25] that  reduce the bends 
by doing local transformations. 

- Similarly, the role of the preprocessing step should also be studied. In par- 
ticular, the performance of grid-based algorithms can be improved by using 
a more sophisticated planarizer. 
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