146 research outputs found

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    Effects of macroscopic polarization in III-V nitride multi-quantum-wells

    Full text link
    Huge built-in electric fields have been predicted to exist in wurtzite III-V nitrides thin films and multilayers. Such fields originate from heterointerface discontinuities of the macroscopic bulk polarization of the nitrides. Here we discuss the background theory, the role of spontaneous polarization in this context, and the practical implications of built-in polarization fields in nitride nanostructures. To support our arguments, we present detailed self-consistent tight-binding simulations of typical nitride QW structures in which polarization effects are dominant.Comment: 11 pages, 9 figures, uses revtex/epsf. submitted to PR

    Cross-sectional scanning tunneling microscopy of InAsSb/InAsP superlattices

    Get PDF
    Cross-sectional scanning tunneling microscopy has been used to characterize compositional structure in InAs{sub 0.87}Sb{sub 0.13}/InAs{sub 0.73}P{sub 0.27} and InAs{sub 0.83}Sb{sub 0.17}/InAs{sub 0.60}P{sub 0.40} strained-layer superlattice structures grown by metal-organic chemical vapor deposition. High-resolution STM images of the (110) cross section reveal compositional features within both the InAs{sub x}Sb{sub 1{minus}x} and InAs{sub y}P{sub 1{minus}y} alloy layers oriented along the [{bar 1}12] and [1{bar 1}2] directions--the same as those in which features would be observed for CuPt-B type ordered alloys. Typically one variant dominates in a given area, although occasionally the coexistence of both variants is observed. Furthermore, such features in the alloy layers appear to be correlated across heterojunction interfaces in a manner that provides support for III-V alloy ordering models which suggest that compositional order can arise from strain-induced order near the surface of an epitaxially growing crystal. Finally, atomically resolved (1{bar 1}0) images obtained from the InAs{sub 0.87}Sb{sub 0.13}/InAs{sub 0.73}P{sub 0.27} sample reveal compositional features in the [112] and [{bar 1}{bar 1}2] directions, i.e., those in which features would be observed for CuPt-A type ordering

    Cation- and vacancy-ordering in Li_xCoO_2

    Full text link
    Using a combination of first-principles total energies, a cluster expansion technique, and Monte Carlo simulations, we have studied the Li/Co ordering in LiCoO_2 and Li-vacancy/Co ordering in CoO_2. We find: (i) A ground state search of the space of substitutional cation configurations yields the (layered) CuPt structure as the lowest-energy state in the octahedral system LiCoO_2 (and CoO_2), in agreement with the experimentally observed phase. (ii) Finite temperature calculations predict that the solid-state order- disorder transitions for LiCoO_2 and CoO_2 occur at temperatures (~5100 K and ~4400 K, respectively) much higher than melting, thus making these transitions experimentally inaccessible. (iii) The energy of the reaction E(LiCoO_2) - E(CoO_2) - E(Li) gives the average battery voltage V of a Li_xCoO_2/Li cell. Searching the space of configurations for large average voltages, we find that CuPt (a monolayer superlattice) has a high voltage (V=3.78 V), but that this could be increased by cation randomization (V=3.99 V), partial disordering (V=3.86 V), or by forming a 2-layer Li_2Co_2O_4 superlattice along (V=4.90 V).Comment: 12 Pages, RevTeX galley format, 5 figures embedded using epsf Phys. Rev. B (in press, 1998

    Spin, charge and orbital ordering in ferrimagnetic insulator YBaMn2_2O5_5

    Full text link
    The oxygen-deficient (double) perovskite YBaMn2_2O5_5, containing corner-linked MnO5_5 square pyramids, is found to exhibit ferrimagnetic ordering in its ground state. In the present work we report generalized-gradient-corrected, relativistic first-principles full-potential density-functional calculations performed on YBaMn2_2O5_5 in the nonmagnetic, ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings are explained with site-, angular momentum- and orbital-projected density of states, charge-density plots, electronic structure and total energy studies. YBaMn2_2O5_5 is found to stabilize in a G-type ferrimagnetic state in accordance with experimental results. The experimentally observed insulating behavior appears only when we include ferrimagnetic ordering in our calculation. We observed significant optical anisotropy in this material originating from the combined effect of ferrimagnetic ordering and crystal field splitting. In order to gain knowledge about the presence of different valence states for Mn in YBaMn2_2O5_5 we have calculated KK-edge x-ray absorption near-edge spectra for the Mn and O atoms. The presence of the different valence states for Mn is clearly established from the x-ray absorption near-edge spectra, hyperfine field parameters and the magnetic properties study. Among the experimentally proposed structures, the recently reported description based on PP4/nmmnmm is found to represent the stable structure

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals

    Full text link
    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that is the elastically soft direction for biaxial expansion of Cu and Ni, but it is for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase-separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along and like in phase-separating systems, while for they behave like in ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in Physical Review

    Pinhole-free perovskite films for efficient solar modules

    Get PDF
    We report on a perovskite solar module with an aperture area of 4 cm2 and geometrical fill factor of 91%. The module exhibits an aperture area power conversion efficiency (PCE) of 13.6% from a current–voltage scan and 12.6% after 5 min of maximum power point tracking. High PCE originates in pinhole-free perovskite films made with a precursor combination of Pb(CH3CO2)2·3H2O, PbCl2, and CH3NH3I

    The Educational and Professional Background of Central Bankers and its Effect on Inflation - An Empirical Analysis

    Full text link
    We assume that central banks can control inflation so that inflation rates reflect the preferences of the central bank council.The hypothesis to be tested is that these preferences depend on the central bankers? educational and/or professional background. In a panel data analysis for the euro area and eleven countries since 1973,we explain inflation first by the weights which the various educational and professional characteristics occupy in the central bank council and second by the education or profession of the median central bank council member. Our results indicate that, with regard to professional background, former members of the central bank staff as well as former bankers and businessmen have the strongest inflation aversion and that former trade unionists and politicians seem to have the highest inflation preference.As for the education of the council members, our results are less robust. However, if the median member of the central bank council has studied business, the inflation rate is significantly lower than if she has studied economics

    Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    Get PDF
    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases
    • …
    corecore