213 research outputs found

    Detection of coherent magnons via ultrafast pump-probe reflectance spectroscopy in multiferroic Ba0.6Sr1.4Zn2Fe12O22

    Full text link
    We report the detection of a magnetic resonance mode in multiferroic Ba0.6Sr1.4Zn2Fe12O22 using time domain pump-probe reflectance spectroscopy. Magnetic sublattice precession is coherently excited via picosecond thermal modification of the exchange energy. Importantly, this precession is recorded as a change in reflectance caused by the dynamic magnetoelectric effect. Thus, transient reflectance provides a sensitive probe of magnetization dynamics in materials with strong magnetoelectric coupling, such as multiferroics, revealing new possibilities for application in spintronics and ultrafast manipulation of magnetic moments.Comment: 4 figure

    On the rotational dynamics of the Rattleback

    Full text link
    The Rattleback is a very popular science toy shown to students all over the world to demonstrate the non-triviality of rotational motion. When spun on a horizontal table, this boat-shaped object behaves in a peculiar way. Although the object appears symmetric, the dynamics of its motion seem very asymmetric. When spun in the preferred direction, it spins smoothly, whereas in the other direction it starts to oscillate wildly. The oscillation soon dies out and the rattleback starts to spin in the preferred way. We will construct and go through an analytical model capable of explaining this behaviour in a simple and intelligible way. Although we aim at a semi-pedagogical treatise, we will study the details only when they are necessary to understand the calculation. After presenting the calculations we will discuss the physical validity of our assumptions and take a look at more sophisticated models requiring numerical analysis. We will then improve our model by assuming a simple friction force.Comment: 17 pages and 2 figures, typos corrected, some minor additions and rewording

    Quasiparticle Relaxation Across a Spin Gap in the Itinerant Antiferromagnet UNiGa5

    Full text link
    Ultrafast time-resolved photoinduced reflectivity is measured for the itinerant antiferromagnet UNiGa5_{5} (TNT_{N} \approx85 K) from room temperature to 10 K. The relaxation time τ\tau shows a sharp increase at TNT_{N} consistent with the opening of a spin gap. In addition, the temperature dependence of τ\tau below TNT_{N} is consistent with the opening of a spin gap leading to a quasiparticle recombination bottleneck as revealed by the Rothwarf-Taylor model. This contrasts with canonical heavy fermions such as CeCoIn5_{5} where the recombination bottleneck arises from the hybridization gap.Comment: 5 pages, 5 figure

    Relaxation Dynamics of Photoinduced Changes in the Superfluid Weight of High-Tc Superconductors

    Get PDF
    In the transient state of d-wave superconductors, we investigate the temporal variation of photoinduced changes in the superfluid weight. We derive the formula that relates the nonlinear response function to the nonequilibrium distribution function. The latter qunatity is obtained by solving the kinetic equation with the electron-electron and the electron-phonon interaction included. By numerical calculations, a nonexponential decay is found at low temperatures in contrast to the usual exponential decay at high temperatures. The nonexponential decay originates from the nonmonotonous temporal variation of the nonequilibrium distribution function at low energies. The main physical process that causes this behavior is not the recombination of quasiparticles as previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80, No.

    Ultrafast photoinduced reflectivity transients in (Nd0.5Sr0.5)MnO3(Nd_{0.5}Sr_{0.5})MnO_3

    Full text link
    The temperature dependence of ultrafast photoinduced reflectivity transients is reported in Nd0.5_{0.5}Sr0.5_{0.5}MnO3_{3} thin film. The photoinduced reflectivity shows a complex response with very different temperature dependences on different timescales. The response on the sub-ps timescale appears to be only weakly sensitive to the 270K-metal-insulator phase transition. Below 160\sim 160 K the sub-ps response displays a two component behavior indicating inhomogeneity of the film resulting from the substrate induced strain. On the other hand, the slower response on the 10-100 ps timescale is sensitive only to the metal-insulator phase transition and is in agreement with some previously published results. The difference in the temperature dependences of the responses on nanosecond and μ\mu s timescales indicates that thermal equilibrium between the different degrees of fredom is established relatively slowly - on a nanosecond timescale

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7δ_{7-\delta} (γ8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic

    Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Get PDF
    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance–induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell
    corecore