43 research outputs found

    Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression

    Get PDF
    Introduction: Rho signaling regulates key cellular processes including proliferation, survival, and migration, and it has been implicated in the development of many types of cancer including breast cancer. P190B Rho GTPase activating protein (RhoGAP) functions as a major inhibitor of the Rho GTPases. P190B is required for mammary gland morphogenesis, and overexpression of p190B in the mammary gland induces hyperplastic lesions. Hence, we hypothesized that p190B may play a pivotal role in mammary tumorigenesis. Methods: To investigate the effects of loss of p190B function on mammary tumor progression, p190B heterozygous mice were crossed with an MMTV-Neu breast cancer model. Effects of p190B deficiency on tumor latency, multiplicity, growth, preneoplastic progression and metastasis were evaluated. To investigate potential differences in tumor angiogenesis between the two groups, immunohistochemistry to detect von Willebrand factor was performed and quantified. To examine gene expression of potential mediators of the angiogenic switch, an angiogenesis PCR array was utilized and results were confirmed using immunohistochemistry. Finally, reciprocal transplantation of tumor fragments was performed to determine the impact of stromal deficiency of p190B on tumor angiogenesis. Results: P190B deficiency reduced tumor penetrance (53% of p190B+/−Neup190B^{+/-}Neu mice vs. 100% of p190B+/+Neup190B^{+/+}Neu mice formed tumors) and markedly delayed tumor onset by an average of 46 weeks. Tumor multiplicity was also decreased, but an increase in the number of preneoplastic lesions was detected indicating that p190B deficiency inhibited preneoplastic progression. Angiogenesis was decreased in the p190B heterozygous tumors, and expression of a potent angiogenic inhibitor, thrombospondin-1, was elevated in p190B+/−Neup190B^{+/-}Neu mammary glands. Transplantation of p190B+/−Neup190B^{+/-}Neu tumor fragments into wild-type recipients restored tumor angiogenesis. Strikingly, p190B+/+Neup190B^{+/+}Neu tumor fragments were unable to grow when transplanted into p190B+/−Neup190B^{+/-}Neu recipients. Conclusions: These data suggest that p190B haploinsufficiency in the epithelium inhibits MMTV-Neu tumor initiation. Furthermore, p190B deficiency in the vasculature is responsible, in part, for the inhibition of MMTV-Neu tumor progression

    Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front

    Get PDF
    Reduction of epithelial cell–cell adhesion via the transcriptional repression of cadherins in combination with the acquisition of mesenchymal properties are key determinants of epithelial–mesenchymal transition (EMT). EMT is associated with early stages of carcinogenesis, cancer invasion and recurrence. Furthermore, the tumor stroma dictates EMT through intensive bidirectional communication. The pathological analysis of EMT signatures is critically, especially to determine the presence of cancer cells at the resection margins of a tumor. When diffusion barriers disappear, EMT markers may be detected in sera from cancer patients. The detection of EMT signatures is not only important for diagnosis but can also be exploited to enhance classical chemotherapy treatments. In conclusion, further detailed understanding of the contextual cues and molecular mediators that control EMT will be required in order to develop diagnostic tools and small molecule inhibitors with potential clinical implications

    NATO Summer School on Solid State Dosimetry

    No full text
    corecore