4,490 research outputs found

    It’s a long way to Monte-Carlo: probabilistic display in GPS navigation

    Get PDF
    We present a mobile, GPS-based multimodal navigation system, equipped with inertial control that allows users to explore and navigate through an augmented physical space, incorporating and displaying the uncertainty resulting from inaccurate sensing and unknown user intentions. The system propagates uncertainty appropriately via Monte Carlo sampling and predicts at a user-controllable time horizon. Control of the Monte Carlo exploration is entirely tilt-based. The system output is displayed both visually and in audio. Audio is rendered via granular synthesis to accurately display the probability of the user reaching targets in the space. We also demonstrate the use of uncertain prediction in a trajectory following task, where a section of music is modulated according to the changing predictions of user position with respect to the target trajectory. We show that appropriate display of the full distribution of potential future users positions with respect to sites-of-interest can improve the quality of interaction over a simplistic interpretation of the sensed data

    Show me the way to Monte Carlo: density-based trajectory navigation

    Get PDF
    We demonstrate the use of uncertain prediction in a system for pedestrian navigation via audio with a combination of Global Positioning System data, a music player, inertial sensing, magnetic bearing data and Monte Carlo sampling for a density following task, where a listener’s music is modulated according to the changing predictions of user position with respect to a target density, in this case a trajectory or path. We show that this system enables eyes-free navigation around set trajectories or paths unfamiliar to the user and demonstrate that the system may be used effectively for varying trajectory width and context

    BodySpace: inferring body pose for natural control of a music player

    Get PDF
    We describe the BodySpace system, which uses inertial sensing and pattern recognition to allow the gestural control of a music player by placing the device at different parts of the body. We demonstrate a new approach to the segmentation and recognition of gestures for this kind of application and show how simulated physical model-based techniques can shape gestural interaction

    Variability in wrist-tilt accelerometer based gesture interfaces

    Get PDF
    In this paper we describe a study that examines human performance in a tilt control targeting task on a PDA. A three-degree of freedom accelerometer attached to the base of the PDA allows users to navigate to the targets by tilting their wrist in different directions. Post hoc analysis of performance data has been used to classify the ease of targeting and variability of movement in the different directions. The results show that there is an increase in variability of motions upwards from the centre, compared to downwards motions. Also the variability in the x axis component of the motion was greater than that in the y axis. This information can be used to guide designers as to the ease of various relative motions, and can be used to reshape the dynamics of the interaction to make each direction equally easy to achieve

    Valid Bayesian Estimation of the Cointegrating Error Correction Model.

    Get PDF
    Two methods of identifying cointegrating vectors are commonly used: linear restrictions and the nonlinear method of Johansenos maximum likelihood procedure. That linear method can produce invalid estimates while the Johansen approach always produces valid estimates has been recognised in several recent articles. As all Bayesian studies to date have used linear restrictions, this article presents a Bayesian method for obtaining estimates of cointegrating vectors that will always be valid.Identification restrictions, singular value decomposition, error-correction model, cointegration, Bayesian analysis

    Evidence from Rb–Sr mineral ages for multiple orogenic events in the Caledonides of Shetland, Scotland

    Get PDF
    Shetland occupies a unique central location within the North Atlantic Caledonides. Thirty-three new high-precision Rb–Sr mineral ages indicate a polyorogenic history. Ages of 723–702 Ma obtained from the vicinity of the Wester Keolka Shear Zone indicate a Neoproterozoic (Knoydartian) age and preclude its correlation with the Silurian Moine Thrust. Ordovician ages of c. 480–443 Ma obtained from the Yell Sound Group and the East Mainland Succession constrain deformation fabrics and metamorphic assemblages to have formed during Grampian accretionary orogenic events, broadly contemporaneously with orogenesis of the Dalradian Supergroup in Ireland and mainland Scotland. The relative paucity of Silurian ages is attributed to a likely location at a high structural level in the Scandian nappe pile relative to mainland Scotland. Ages of c. 416 and c. 411 Ma for the Uyea Shear Zone suggest a late orogenic evolution that has more in common with East Greenland and Norway than with northern mainland Scotland

    GpsTunes: controlling navigation via audio feedback

    Get PDF
    We combine the functionality of a mobile Global Positioning System (GPS) with that of an MP3 player, implemented on a PocketPC, to produce a handheld system capable of guiding a user to their desired target location via continuously adapted music feedback. We illustrate how the approach to presentation of the audio display can benefit from insights from control theory, such as predictive 'browsing' elements to the display, and the appropriate representation of uncertainty or ambiguity in the display. The probabilistic interpretation of the navigation task can be generalised to other context-dependent mobile applications. This is the first example of a completely handheld location- aware music player. We discuss scenarios for use of such systems

    The dispersive self-dual Einstein equations and the Toda lattice

    Get PDF
    The Boyer-Finley equation, or SU()SU(\infty)-Toda equation is both a reduction of the self-dual Einstein equations and the dispersionlesslimit of the 2d2d-Toda lattice equation. This suggests that there should be a dispersive version of the self-dual Einstein equation which both contains the Toda lattice equation and whose dispersionless limit is the familiar self-dual Einstein equation. Such a system is studied in this paper. The results are achieved by using a deformation, based on an associative \star-product, of the algebra sdiff(Σ2)sdiff(\Sigma^2) used in the study of the undeformed, or dispersionless, equations.Comment: 11 pages, LaTeX. To appear: J. Phys.
    corecore