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ABSTRACT

Two methods of identifying cointegrating vectors are commonly used lin-
ear restrictions and the nonlinear method of Johansen’s maximum likelihood
procedure. That the linear method can produce invalid estimates while the
Johansen approach always produces valid estimates has been recognised in
several recent articles. As all Bayesian studies to date have used linear re-
strictions, this article presents a Bayesian method for obtaining estimates of
cointegrating vectors that will always be valid.
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1 Introduction.

A significant advance in multivariate time series methods was the develop-
ment of the concept of cointegration, first proposed by Granger (1983). It is
well known that as cointegrating vectors are not unique, identifying restric-
tions must be imposed to allow their estimation. Two common methods of
imposing such restrictions are by imposing linear restrictions with normali-
sations on particular coefficients, or using the eigenvalue-eigenvector method
of identification first developed by Anderson (1951) for the reduced rank re-
gression model, and used by Johansen (1988, 1991) in the cointegrating error
correction model.

The relative strengths of these two methods of identification were recently
emphasised by Boswijk (1996) and Luukkonen, Ripatti and Saikkonen (1999).
They both make the point that the restrictions used by Johansen do not
generally produce interpretable estimates, but they will always be valid. In
contrast, imposing linear restrictions has the advantage that it can produce
interpretable coefficients, however, the chosen restrictions may be invalid and,
in this case, any analysis based on them will be meaningless (Luukkonen, et
al., 1999). These authors stress the importance of considering the validity of
the restrictions used and they develop procedures for testing the validity of
the restrictions imposed.

In their applications these authors present convincing empirical examples
of plausible normalisations that were in fact found to be invalid. Using data
for Finland, Luukkonen et al. show the own yield of broad money does not
cointegrate with one and three month money market rates and the five year
bond rate. Boswijk shows for a money demand relation for the UK, that
real money and income may only enter a cointegrating relation together as
the velocity of money which implies unit-income elasticity of money demand.
The evidence from these studies is that the normalisation matters and an in-
valid normalisation will suggest the presence of more stochastic trends than
actually exist (Boswijk, 1996). This occurs as the space spanned by the
cointegrating vectors is excluded from the space spanned by the normalised
estimates of the cointegrating vectors. These problems provide strong ar-
guments for using the Johansen approach rather than the linear restrictions
when we wish to avoid having to choose a coefficient on which to normalise.

The above work has been developed using the classical approach. Bayesian
work lags classical efforts in this area in that it has, to date, relied solely
on the linear restrictions to achieve identification and there has been little



consideration in the Bayesian literature of the validity of the identification
restrictions and normalisations used. Examples of studies using linear re-
strictions include Kleibergen and van Dijk (1994), Bauwens and Lubrano
(1996), Geweke (1996) and Kleibergen and Paap (1998). These papers focus
upon estimation, determining the number of stochastic trends in a system,
and the implications of just identifying and over identifying restrictions for
the posterior. All of this work assumes that the chosen linear restrictions are
valid. With the possible exception of Geweke (1996) who suggests a proce-
dure for determining the most likely set of restrictions based upon posterior
probabilities, none of this work carefully considers procedures for testing the
validity of such restrictions or methods of estimating cointegrating vectors
that will always be valid.

This article partly addresses this imbalance between the classical and
Bayesian literature by presenting a procedure for Bayesian estimation of
cointegrating vectors that will always produce valid estimates. This pro-
cedure uses a method equivalent to the identification method of Johansen. It
allows for inference regarding the rank, estimation of both unrestricted and
restricted cointegrating vectors, as well as tests of restrictions on the coin-
tegrating vectors. As interesting hypotheses about cointegrating vectors can
be specified as linear restrictions, I specify restrictions of the form suggested
by Johansen and Juselius (1992) for testing of the space spanned by the coin-
tegrating vectors. Using the Bayesian approach has some advantages over
the classical approach in that exact finite sample inference is possible, and
this inference is obtained from the posterior which uses all of the information
in the likelihood, rather than the conditional likelihood. Using this approach
we are able to obtain unconditional probabilities for the rank and need not
select the rank based on a sequence of possibly conflicting tests.

The article is organized as follows. Section 2 introduces the model, the
alternative forms of identifying restrictions and some explanation of the im-
plications of these alternatives. The aim of this section is to present some
implications of using the Johansen restrictions and to contrast these with the
linear restrictions. A method for implementing the Johansen restrictions is
presented in Section 3 along with the specification of the linear restrictions
upon the cointegrating vectors. We use the method of Kleibergen and van
Dijk (1998) of embedding the reduced rank cointegrating model within a
full rank model. Section 4 contains an empirical application and Section 5
concludes.



2 The Model.

The error correction model (ECM) of the 1 X p vector time series process y; =
(Y1ts---Yp) , t = 1,..., T, conditioning on the [ observations t = —[+1,...,0,

1S

Ayt = yt—lH + Ayt_lrl + ...+ Ayt_lrl + % +to + Et (].)
= Yyl + 2P+ ¢

where Ay, = yi—yi—1, 21 = (Ayy_v, ..., Ay, 1,t) and & = (T, ..., T, 1/, 8').
For later use we define the vector m = vec (II) .

Of interest in this paper is the coefficient matrix IT which is of rank (II) =
r < p, while we assume I';, ¢« = 1,...,]l and ® are full rank. When II has
reduced rank this implies y; is cointegrated and II can be expressed as Il = fa
where 3 and o’ are p x r and assumed to have rank r. Then (3 is the matrix of
cointegration coefficients and « is the matrix of factor loading coefficients or
adjustment coefficients. The p x (p — r) matrices 3, and ¢/, are orthogonal
to B and o respectively such that 38, = 0 and a o’ = 0. We assume that

(1= 2) (I, = S, 2'T3) — 280 =0
implies z =1 or z > 1, and we further assume
B (I — Zhoily) o | £ 0,

such that each element of y; is either I (1) or I (0) (Johansen, 1991).

To identify the elements of 3 and «, we need to apply at least r? restric-
tions. A common method of imposing identifying restrictions is to apply r?
linear restrictions on 3 by assuming the matrix ¢/3 is nonsingular for some
known p x r full column rank matrix c¢. The general specification of these
restrictions and the resultant unique normalised cointegrating vectors, 3%, is

dBEB)" = I, and (2)
go= pen)

This approach takes advantage of the fact that there will be r linearly inde-
pendent rows of 3, as selected by ¢, but makes the assumption that we know
which rows these will be so that we can specify c¢. Consider the partition

=15
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where [3; is the first r rows of 3. A common example of the linear method in
(2) is the zero-one restrictions on 3 which result from specifying

d=[I 0 (3)
such that
B =87 = [ " ] @)

where b* is a (p — r) X r matrix to be estimated. This method assumes the
set of the first r variables cointegrate (or are 1(0)) (Johansen 1995 p.94), or,
in other words, that the rows of (3; are linearly independent, thus imposing
an order on the variables. However, we may wish to investigate precisely this
question of which variables enter the cointegrating relations and how they
enter, or at least we may wish to avoid making such strong assumptions.

Before we specify the restrictions used in this paper, we need to define the
matrices S;; for ij = 0,1, 2. These are moment matrices when we use a diffuse
prior and are analogous to moment matrices when we use an informative
prior. The S;; for the diffuse prior are defined as follows. Let

ko= T+(1+3)p+1,

20t = Ay, 21t = Yt—1, and 2ot = Tt.
Then
KMy = S17250 for (i,7) = (1,1),(2,1),(2,2),
K,MQO = Z?leéyt207t, K,Mlo = Z?:lzi,tzo,tv
My = Ef:1z67tz0,t, and so
Sij = M’U — MiQMilng, fOI' Z] = 0, 1, 2,
except when ¢ = 7 = 2 where

Syy = MQQ—M21M1_11M12-

The identifying restrictions used in this paper are all imposed on [ in the
following normalisations,

BSup =1 (5)



which implies ﬁgil restrictions, and
3810800 S8 = A = diag(vy, -, 7,) (6)

which implies a further ﬁr;—ll restrictions for a total of 72 restrictions and
(p — r) r free parameters in 3. With an assumption about the sign of the first
element in each row of 3, (5) and (6) define r? elements of 3 as deterministic
functions of the remaining (p — r) r elements in that matrix. Thus, we may
write

61 =f (62) ) (7)

where f(-) is a deterministic function.

In the expression (6), A is random with an implied posterior distribution
in the Bayesian method and v; > ... > v, > 0. As this set of restrictions
does not impose an order on the variables, we will call this the nonordinal
method.

Validity of the normalisation used is not the only implication of the cho-
sen method of identification. Bauwens and Lubrano (1996) show that the
posterior distribution of the cointegrating coefficients subject to just identi-
fying linear restrictions has a Cauchy form and no moments. For a further
explanation of this result see Villani (2000). In contrast, using the nonordinal
identification method the posterior for these coefficients has bounded support
and all moments are defined (Strachan, 2000). This difference in the form of
the posteriors and the ability to produce valid cointegrating vectors results
from how the two methods restrict the vectors for identification. Essentially,
the linear method restricts the length of one coefficient by tying it to an axis
and so excludes directions orthogonal to the axes to which we have tied our
coefficients. However, the nonordinal method achieves identification by re-
stricting the length of the cointegrating vector, allowing all possible directions
to be obtained.

Figures (1) and (2) demonstrate these restrictions for the cointegrating
vector from a bivariate system. The solid lines represent the cointegrating
vector in R? and the dashed lines represent the identifying restrictions. The
figures illustrate how the support for the coefficients is bounded in one case
but not for the other. Using the linear restrictions we assume 3; = 1 and
By € R'. Using the nonordinal restrictions we assume 3, € [0,1] and 3, €
[—1,1]. The bounds for 3, in the Figure 2 were arbitrarily set at 1. In reality
these bounds depend upon the data and the boundary represented by the
dashed line will generally form an elipse (Strachan, 2000).
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Figure 1: Representation of the linear identifying restrictions in a bivariate
cointegrating system. The dashed line represents the restriction and the solid

arrow represents a possible vector. The solid arrow must always reach the
dashed line.

It is well known that any linear combination of a set of cointegrating
vectors constitutes a valid cointegrating vector. This implies that the length
of any cointegrating vector is of no real interest, since we can post multiply
[ by a full rank diagonal matrix to produce whatever length for each vector
we desire. What is of interest is the direction or the angle of the vector.

Selecting a dependent variable for a cointegrating relation and normal-
ising on the coefficient for this variable is not necessary and may in fact
complicate estimation even when such a normalisation is valid. Under this
normalisation, the expectation of the quantity of interest may not exist due
to the Cauchy form of the posterior. For example, consider a system with
the endogenous variables m, the logarithm of the M3 measure of money, and
p, the logarithm of the level of prices, P and possibly some other variables.
Suppose this system contains these variables only in the term

aom + oqp
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Figure 2: Representation of the nonordinal identifying restrictions in a bi-
variate cointegrating system. The dashed line represents the restriction and
the solid arrow represents a possible vector. The solid arrow must always
reach the dashed line.

and we are interested in the prices elasticity of money given as

_dm  dM3 P
"= T AP M

If we normalise before estimation by
aq
m+ —p=m+np,
Qo

the posterior for n may have no moments and so we need to resort to the
posterior mode or median as estimators. For a simple univariate problem
these may be relatively straightforward to obtain, however, they tend not to
be estimated as well as the mean of a distribution using current methods.
Further, if the parameter of interest is a vector, posterior modes and medians
become more difficult to estimate accurately relative to the mean.
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As the quantity of interest is the ratio of two coefficients in a system, then
this quantity can alternatively be retrieved from means of the two coefficients.
We could use the normalisation given in (5) and (6) so that the posterior
means &y = F (ogly) and &3 = E (aq|y) exist, and report the quantity of
interest as _

Qaj

=

If we are interested in the support for some restriction such as
1 = RO,

with known x, so that

agm + ayp = ag (m + Kkp) ,

this constraint can be tested and imposed within (5) and (6), and the poste-
rior for ay will have all its moments defined.

3 Identification.

The method in this paper uses Kleibergen and van Dijk’s (1998) approach
of transforming from a general model to a restricted model to overcome the
problem of local nonidentification even when a uniform prior is used. That
is, the reduced rank model is nested within a more general (full rank) model
which has a well behaved posterior distribution with a reasonable prior, and
then the model is transformed such as to parameterize the restriction to a
lower rank, effectively conditioning on the given rank r. Beginning with the
ECM in (1) with posterior p (w|y), we use the transformation

Il =fa+ S50, a2 (8)

where 3 = Soo — So1 Sfll S10. This gives us the intermediate transformed, but
unrestricted model

Ay = o1 B+ 1S B ALY + 2, ® + g (9)

with posterior for

!/

H = (1)60 (B)",vec ()", vec (A)/)

9



given by
p(0ly) =p (= (0) |y) || (10)

where and |J| is the Jacobian for the transformation from 7 to 6. From this
section on we ignore the parameters ¥ and ® as they have standard, well
known conditional and marginal posteriors. The cointegrating ECM occurs
at A =0,

Ay =y 1Pa+ 2D+ & (11)

and we obtain the posterior for

by = (7)66 (B)",vec (a)/)/

p(Goly) = p (0]y) [r=o- (12)

To present the implementation of the transformation in (8) we need the
following definition. Let A be a positive definite matrix with singular value
decomposition A = USV’ such that S is a diagonal matrix with positive
diagonal terms. Let S? be the matrix S with each of the diagonal elements
replaced its square root. We define the square root of A as Az = US3V!
such that AZA% = Aand A" 3AA % = I.

The decomposition in (8) is equivalent to taking an SVD of II with respect
to its estimated variance-covariance matrix. This approach is similar to the
approach Johansen (1988, 1991) takes in the maximum likelihood estimator.
The posterior estimate of the variance-covariance matrix for II is Sk LS.
Alternatively we could use ¥ instead of 3 in (8), however this results in a far
more complex Jacobian and contributes nothing to the method!. Define II*
by )

= 8,°I"Sz. (13)

The SVD proceeds as follows. Let U = [ Ui U, } and V = [ i Vo } be
appropriate orthonormal matrices where Uy, V) are pxr, Uy, V, are pX (p—r)
and S; and S, are diagonal r x r and (p — r) X (p — r) respectively. Make
the following transformation:

m = USV'=| U Uﬂ[% £2H¥1] (14)
2 2

IThe author is grateful to an anonymous referee for comments which lead to this much
simpler specification.
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= {U1T UQ}lTlOﬁl ﬁozll“g]

U1§1V1, + U85V,
= Ulﬁlﬁlvll + U ThT1 S, T T,V

where we have the r x r orthogonal matrix T', and the (p — r)x (p — ) orthog-
onal matrices 177 and T5. The matrlces T, T and T, contain the eigenvectors

of the (random) matrices U1811 S10550" 801511 Uy, ULS'Us and VISVs re-
spectively, such that

_ _1 _1
TUIS 251050 S0 812 UhT = A = diag (74, -..,7,)

T{UﬁSﬂlUng = Al = diag (7]1, - np_r)

TVISVaTy = A% =diag (s1,...,Spr) -

Denote the eigenvalues of the p x p matrix Sfl% 5105&313013;1%, by (v1, ..., Vp)
where v; > ... > v, > 0, although in practice v; > ... > v, > 0. These
eigenvalues are also the squared canonical correlation coefficients. The di-
agonal elements of A, (v, ...,7,), are bounded by v; > v, > v,_,4; (Schott
1997, p.111), and at the mode of the posterior, v; = 7,.

Using the above transformation we obtain the following expressions for /3
and «,

8 = SUT = ST, (15)
a = T'S,V/Ss. (16)

From the last term in (14) we define the p x (p — r) matrices 3, and /| by

ﬁj_ = S1§1U2T17
a, = TS 2,

and finally
A = T18,T5. (17)

Thus we obtain the transformation in (8).

11



3.1 The Jacobian for the transformation.

The restrictions for the transformation (8) are expressed in the 7% equations
Lvec(B'Spuf—1)=0 (18)

and B
Lvec(B'DB —A) =0 (19)
where Lvec(A) is the @ vector of lower triangular elements of the r x r

matrix A, and Lvec(A) is the ﬁg;lz vector of infradiagonal elements of A
(Magnus and Neudecker, 1980, Henderson and Searle, 1979).

For the purpose of finding an expression for the Jacobian, let 3, contain
the free parameters such that given 3, and the data, 3; is known through
the function (7). The Jacobian matrix can be expressed as

Ovec (II)
ovec (By, a, \)'
[ Ovec (IT)  Qvec (I)  OQvec (H)]
Ovec(By)"  Ovec(a)"  Ovec(N)

J (H : (527 Q, )‘))

The forms of these expressions are presented in Appendix I. Where A = 0
the Jacobian has the form:

Ovec (11) _
(Ovec oz))/ (Ir & )

ool G s | R C O |
% = (Zo/. ®5,,'8,)

3.2 Sampling scheme.

The aim of this section is to outline a procedure for obtaining a draw from
the posterior p (6p|y). The forms of the joint and conditional posteriors of
a, A, and (§ are not from known classes of probability density functions.
To sample from these posteriors we use the same approach as detailed in
Kleibergen and Paap (1998). That is, a Metropolis-Hasting algorithm is
used with the candidate density being that for the full rank model, p (0|y).

12



This sampling scheme is outlined here. First we use the following steps to
draw from the candidate density. At iteration i, for i =1,...,m,

Step 1: Draw @ from p (I|y).

Step 2: Perform SVD of ITI) = y® s@y/ (),

Step 3: Compute a®, A and 5 using (15) and (17).

As we have sampled A which only appears in (10), to get draws from (12),
we augment the posterior for the reduced rank model, p (6y|y), with a proper
distribution for A, g (A|fy,y) . Again, the reader is directed to Kleibergen and
Paap (1998) for details of this method. The weights used to accept or reject
draws are

w = (ol | (20)
g (X160, y) p (651y)
p(69y)

As discussed in Kleibergen and Paap (1998), Geweke (1989) shows m ! f w;
i=1

converges to the ratio of the integrals

J g (Mo, y) p (Boly) dO
Ip(Bly)dd

This result is useful for estimating Bayes factors. The steps in the Metropolis-
Hastings sampler are:
Step 1: Draw 0*“*Y from p (0]y) .
Step 2: Accept 87TV = 0*(+1) with probability min (%, 1) ,
otherwise 80+ = 9.

The resultant set ) will be a draw from the posterior

p (X 0oly) = g (Mbo, y) p (Boly)

(21)

and the set 05" will be a draw from p (Boly) -

3.3 Linear restrictions on J.

In the Introduction it was argued that linear restrictions on 3 will not always
be appropriate as ¢/ 3 may be singular depending on the order of the variables
in ;. Therefore, linear restrictions force the researcher to declare which r rows

13



of 3, are linearly independent which may involve deciding which variables
must enter the relationship ;3. This raises the question: What is the form
of 47 Or, in other words, what valid linear restrictions can be imposed on
67

In both the classical and Bayesian approaches, to test the appropriateness
of such restrictions and to estimate the restricted model, requires a specifi-
cation of the model subject to these restrictions. In the classical maximum
likelihood approach, Johansen and Juselius (1992) has provided methods for
estimation with, and testing of, these restrictions. In this section we present
the Bayesian equivalent with the SVDs for the models with various linear
restrictions on 3. The three restrictions investigated are presented as the
following hypotheses.

(R1) Hy:p=Hvy
where the dimensions of the respective matrices are: H px s, ¢ s xr, r < s.

(R2)  Ho:fB=(by)=(bbry)
where the dimensions of the respective matrices are: b p x s, b, p x (p— s),
v (p—s)x(r—s),s<r.

(R3) Hy:p = (H1¢17H2¢27"'7Hl¢l)
where the dimensions of the respective matrices are: H; p X s;, 1, S; X 14,
ry < S, L<r >, =r.

The restriction in R; imposes the same restriction on all of the columns
in 3. The second restriction, Ry, assumes we know the form of the first s
columns of (3, b, and the remaining r — s columns, b1, are unknown except
that they are orthogonal to b. The final hypothesis, R3, generalizes the first
two.

The SVD for these hypotheses can be found by using the results in Ap-
pendix IT which presents the SVD for a nonsquare matrix, ¢, and the follow-
ing transformations.

For R;, the model becomes

Ay, = y Il + 2, + ¢
yt_l.HQO -+ .'th) + Et
= YY1+ P+

where

o =1a+ (H'SyH) ' A, .

The Jacobian for this transformation, J®, is of the same form as the Jaco-
bian in Appendix I with Si1, p, §, and II replaced by H'S11H, s, v, and ¢

14



respectively. The definition of S;; remains unchanged in this case.
For R, the model becomes

Ay, = yall+ 2P + ¢
= Y 1bar + 4y 10190 + 2P + &
= Y1bro+ %P + ¢
y'_1p + %P + &

where 1% = [y, 1b 7], ®* = [o/} ®']' and
¢ = tag + (U S1bi) " ¥ A, 3.

Again the Jacobian, J2, can be found by using the form of the Jacobian in
Appendix I with Siq, 8, II, x; and « replaced by ¥, S11b, , ¥, ¢, %, and oy
respectively.

Finally, for R3, the model becomes

Ay, = y Il + 2P+ ¢
= y 1oty 1 Hopy + -+ y 1 Hipy
+z:P + &
= Y9 + 24P + &

where ~
;= i + (H S H;) ™y Mt 3,
i =1,...,1, 1 < r. Each of the [ Jacobians, J/*, can be found by using
the form of the Jacobian in Appendix I with Si;, 3, p, II, «, x;, and A
replaced by H.S11:H;, ¥;, Eﬁzls@ ©;y iy T8, and \; respectively where x%;; =
(yi—1Hy -+ - yi—1H; ;) does not include y*,_1,; = y;—1H; . In the construction
of Si1;, we use the same definition as for Si;, except we replace X with
X = (2% 2%+ xa;T)/'
Estimation of these models requires little extra computer coding beyond
that required for the general model using the transformation (8). That is,
we can represent the process of passing (SH,H, f]) to a procedure which

returns («, 5,\) by (o, 5, ) = procl (811, I1, i) and we get the Jacobian by
J = proc2 (811, Ty, o, B, N, i) Then for the above restrictions we would have

(o, 1, \) = procl (H’SHH, ®, ENJ) . JB = proc2 (H’SHH, Ty, 0,0, A, ENJ) forRy,

15



(a27 ¢7 >‘) - pTOCl (blSIIbLu ®, i) 9 JR2 = pTOCZ (blSIIbL7 matu Qg, ¢7 >‘7 i) fOI' R27

and (aia ¢i7 )‘) = pT061 (Hzlsllew 2% i) 9
J-RS = pT002 (H;SHZH” .Z’ait, (7% ¢i7 >\i7 i) for each i for Rg.

4 Application.

In this section I demonstrate estimation of a cointegration vector for four
Australian interest rates using the nonordinal estimation method. I test the
validity of particular linear restrictions using the form R; of the hypothesis
specified by Johansen and Juselius (1992). The four interest rates are the 5
year (i5) and 3 year (i3) Treasury Bond rates (Capital Market) and the 180
day (i180) and 90 (igp) day Bank Accepted Bill (Money Market) rates and so

y = (15, i3, 1180, 990) -

The time subscripts have been dropped for notational convenience. The data
are annualised monthly rates for the period July 1992 to April 2000 (7" = 94).
A graph of the data is presented in Figure 3.

These variables are useful for the study of the various theories for the
term structure of interest rates. Common implications of many of these
theories is that, while the rates themselves may be integrated of order one,
we would expect to find the spreads of these rates to be stationary, and we
would expect to find, in this case, three cointegrating relations. Thus the
spreads should either form the cointegrating relations or the rates may enter
the cointegrating relations via the spreads.

Classical pretesting suggests each series is integrated of order one and we
find an ECM with one lag of differences is sufficient to model the process.
All classical testing is at the 1% level of significance. Only the 180 day
rates show slight evidence of autocorrelation in the squared residuals (the
p-value for the LM test is 0.027), however, following Luukkonen et al., we
ignore this feature as modelling this behaviour is outside the scope of this
paper. For comparison with the classical results, in the Bayesian estimation
we use the diffuse prior for the parameters in (1) used by Kleibergen and van
Dijk (1994). We use an informative prior to provide interpretable posterior
probabilities.

16



Bayesian posterior probabilities and classical likelihood ratio tests for the
rank are presented in Table 1. Both the Bayesian and classical results suggest
a rank of one which implies the system contains three stochastic trends,
although at the 5% level the classical tests would accept a rank of zero. The
finding of a rank of one conflicts with the idea that the interest rates will share
a common stochastic trend, however, further analysis provides an explanation
for this result. We accept the result that there is one cointegrating vector
and the resultant classical and Bayesian estimates of the error correction
term are, respectively,

YB = p1is + 0oz + Psiiso + Paioo
Classical
= —0.382i5 + 0.392i3 + 0.773i150 — 0.780igg
Bayesian (diffuse)
= 0.46075 — 0.50675 — 5.6961189 + 5.6439¢
Bayesian (informative)
= 0.06475 4 0.065735 — 0.2024189 + 0.0141g,.

Normalising on ¢, we obtain

YB/os = ©1/@ais + 0o/ ats + 03/ at180 + 90
Classical

= 45— 1.02695 — 2.022¢,8¢ + 2.040i9¢
Bayesian (diffuse)

= 15 — 1.100i3 — 12.376¢180 + 12.263799
Bayesian (informative)

= 15+ 1.02375 — 3.1591150 + 0.2141g,.

The coefficients on the short rates for the diffuse Bayesian and the classical
estimates are much larger than for the long rates, suggesting changes in the
short rates have a greater effect upon the error correction term. Also, the
estimates suggest we could use the spreads (i5 — i3) and (i180 — 799) as the
only variables in the cointegrating vectors since the rates in these spreads
appear to have the same coefficients. This grouping would appear sensible
as it groups the interest rates into similar markets.

The estimates from the informative prior are quite different from the other
two which suggests that this prior has a strong affect on the estimates and is
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shifting the posterior away from the values suggested by the data. Further,
changing the ‘informativeness’ of the prior by changing the prior variances did
not improve estimation. Therefore, unless using a large sample, the diffuse
prior is recommended if the objective is estimation.

If all four rates do enter via the spreads, g will have a space spanned by
H, where

1 0 0
-1 1 0

Hy, = 0 -1 1
0 0 —1

Thus, with ¢ a 3 x 1 matrix, our first hypothesis is
Hy: B = Hyp. (22)

This implies we should be able to apply a linear normalisation of the form
(2) with ¢ = (1,0,0,0) to obtain estimates of 3.

Given a rank of one and the results in Table 2, we would accept this
hypothesis with a posterior probability of P (H;|y) = 0.773 and the classical
LR test statistic for H; against

Ho : B unrestricted

of 0.025. The classical and Bayesian estimates of the error correction term
subject to H; are, respectively,

yHo = ¢, (i5 —13) + @q (i3 — i180) + @3 (1180 — G90)
Classical
= 1.932(i5 — i) + 0.161 (i3 — d150) — 6.464 (i150 — i90)
Bayesian (diffuse)
= —1.813 (i5 — i3) + 0.217 (i3 — i150) + 5.143 (i1s0 — dgo)
Bayesian (informative)
—  0.080 (i5 — i) -+ 0.159 (i3 — i150) + 0.187 (i1s0 — dg0) -

Normalising on ¢3; we obtain

yHo/ps = ©1/03(is — 13) + o/ @5 (i3 — i180) + (f180 — G90)
Classical
- —0299 (25 - 13) - 0002 (23 - 7:180) + (7:180 - igo)
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Bayesian (diffuse)

= —0.353 (i5 — i3) + 0.042 (i3 — d150) + (150 — iso)
Bayesian (informative)

= 0.428 (i5 — i3) + 0.848 (i3 — i150) + (i150 — dg0) -

The informative prior estimate again shows the effect of the prior upon the
distribution of the cointegrating coefficients, and we again see the classical
and the diffuse prior estimates closely approximate each other.

The support for H;, which is suggested by the theories of the term struc-
ture of interest rates, provides no explanation for the presence of three
stochastic trends in the system. Further, we note that the diffuse prior
and classical estimates of ¢, are relatively small and possibly close to zero.
Therefore, as a first step to explaining the number of stochastic trends, we
next test the hypothesis that the spread between the long and short rates, the
capital and money market rates, does not enter the cointegrating relation.
This hypothesis is

Hy: 8= Hyp = o =10 (23)
where
1 0
-1 0
H, = 0 1
0 -1

The posterior probability of Hs and the likelihood ratio test statistic in Table
2 suggest support for H,. Re-estimating subject to the restriction in Hsy we
obtain the estimates

yHp = ¢, (is —is) + @3 (i1s0 — i90)

Classical

= 1.208 (i5 — i3) + 6.968 (4180 — %90)
Bayesian (diffuse)

= —1.039 (i5 — i3) + 6.787 (i180 — 790)
Bayesian (informative)

= —0.001 (i5 — i3) — 0.108 (3180 — g0) -

Normalising again on ¢5 we obtain

yHo/ps = @1/p3(is —i3) + (i180 — i90)
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Classical

= 0.173 (i5 — i3) + (i180 — 900)
Bayesian (diffuse)

= —0.153 (i5 — i3) + (i180 — %00)
Bayesian (informative)

= 0.007 (i5 —i3) + (4180 — @90) -

The above estimates suggest an additional restriction which excludes the
long rates from the cointegrating relation, and it is this result which would
explain the presence of too many stochastic trends in the system. Therefore
we test the hypothesis that the long rates do not enter the cointegrating
relationship which is implied by the hypothesis

Hs: B = Hsp = Py =p3=0 (24)
where
0
0
H; = 1
—1

H3 is accepted indicating that the error correction term is simply the spread
between the short term rates. A test of cointegration between the long rates
using a bivariate ECM confirmed the finding that these rates do not cointe-
grate.

The finding that the long rates do not enter the cointegrating relation but
the short rates do via the spread, explains the presence of three stochastic
trends. Further, this result indicates that while it would seem reasonable
to identify 8 using the linear restrictions in (2) with ¢ = (1,0,0,0), that is
by normalising upon ¢, this would in fact produce an invalid estimate of
(3 since we found 45 and i3 are not present in the cointegrating relation and

50 9y = 0 = 0.
Table 1: LR statistics and posterior probabilities for rank (r).

r=rank (II) LR (r|p) 1% Critical value P (r|y)
0 99.23 54.46 0.00
1 31.66 35.65 1.00
2 10.26 20.04 0.00
3 2.33 6.65 0.00
4 - - 0.00
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Figure 3: Plot of Australian interest rates. The series are the 5 year (i5) and
3 year (i3) Treasury Bond rates (Capital Market), and the 180 day (i159) and
90 (igo) day Bank Accepted Bill (Money Market) rates.

Table 2: LR statistics and posterior probabilities for hypotheses.
Hypothesis, H; LR (H;|Hy) 1% Critical value P (H;ly)

Hy 0.025 6.63 0.773
Ho 4.431 9.21 0.516
Hs 9.328 11.34 0.603
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5 Conclusion.

In this paper we have demonstrated a method for Bayesian estimation of
cointegrating vectors that will always be valid in the sense that it avoids
invalid normalisations. This method uses restrictions on the parameters that
are equivalent to those used in the classical maximum likelihood estimator
for this model developed by Anderson (1951) and applied to cointegration
problems by Johansen (1988, 1991). The specification of the model is similar
to Kleibergen’s approach as it uses a parameterisation of the rank reduction.
That is, the potentially reduced rank matrix IT is transformed to («, 3, ) and
the rank of IT is reduced if A = 0. We have demonstrated some of the impli-
cations of employing linear restrictions for the posterior of the cointegrating
coefficients for the estimates and the distribution of the coefficients.
Estimates of coefficients are presented for a simple model and compared
with classical methods of inference. In this empirical example we demonstrate
a case where a seemingly sensible normalisation would in fact be invalid,
justifying the use of the nonordinal method for at least initial estimation.
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7 Appendix I: The Jacobian for the Trans-
formation.

From the transformation (8) in Section 2 we have the following equation
Il =fa+ S50, A3,
and the r? restrictions equations in (18) and (19)
Lvec(B'Spuf—1)=0

and B
Lvec(ﬁ'SloS&)lSmﬁ - F) =0.
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To find an expression for the Jacobian, use the results of Roy (1952, p. 118)
which are reproduced here for convenience.

“Theorem 1. If y; = fi(z1,...,Zm;Tmaty ooy Tman) (0 = 1,...,m)
when s (j=1,...,m + n) are subject to n constraints
filz1, o T Tty o+ s Tan) =0 (E=m+1,...,m+n),

then (under the usual conditions for the existence of the Jacobian, including
the non-vanishing of the numerator and the denominator in the following)
we have”

O(frs -y frns frntts - ooy frnin)

J Ty, ..., =
[T 2 01 ) ‘6(%,...,mm,xm+1,...,wm+n)

Importantly for our needs, in the proof for the above theorem, Roy
presents the Jacobian as

ij=1,....,m (25)

oy
| T(Y1s s Ym s X1y ey T)| = '

6.’13j
O f; A §f6
f+ Ji 6y,

,j=1,...,m

(S.CE]' —l (S.CE],C (S.CE]'

For the purpose of deriving the Jacobian, we treat a;, 3, and (3; and
as the zjs, and «, 35, and \ as the x’s in (25). Therefore the form of the
Jacobian matrix for (8) is

Ovec (II)
ovec (By, a, \)'
_ lavec (IT)  Qvec(IT)  Avec (1T ]

J(IL: (B, o, A))

Ovec(a)  Ovec(By)"  Ovec(N)

where
Ovec (II) _ Ovec (IT)  Ovec (o))
(Ovec () (I ®6) + (Ovec (ar)) (Ovec ()
dvec (I1) ~ )
W: (Z@SnﬁLA)

25

X' 6(fm+17 .- -7fm+n)
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Letting ooy = ¢ [[L — o (ac) ™! c’}, where ¢ = (I, 0)' and ¢; = (0 I1_,),

0 (vec(ay)) _ [
0 (vec (@)

¢(ac)™ ' ® (c (o)™ acL)/ - [c (ac) " ® cﬂ K.

where for an m xn matrix A, K,,,vec (A) = vec (A") (Magnus and Neudecker
1988, p. 47), we have

Ovec (II)

vec(@)) (It ® B)
+ (i ® Sﬂlﬁl)\) {c (ac) ' ® (c (o)™ acL)/ — [c (ac) ' ® C’J K,
= (I ®p)+ (ic (ac)™" @ STIB A, (c (ac)™" oz)/ — ]LD K, .
0 (vec (II)) _ 0 (vec (I)) 0 (vec(B))
0 (vec (B3,)) 0 (vec (8))" 0 (vec (B,))

0 (vec (11
0 (vec (B,))

9 (vec (1))
9 (vec (B))

() _ [L«® ( . I, )1 Owec(By)) [b@ ( O (pr) )1

9 (vec(8)) 0 (vec(B))
0 (vec (0 ) 0 (vec (62))/

N
\_/\_/

= (o' ® 1)

0 (vec (05)) p-r)xr ) | O (vec(By)) Lp—r
To find the partial derivative g((;:cc((ﬂﬂ;))))/’ express (3; as a function of 3,. The

r? restrictions in (5) and (6) provide this expression. These r? restrictions,

therefore, enter the Jacobian from the following expressions:

BSuB = I = B (S11)11 81 = I — 81 (S11)12 82 — B2 (S11) 91 B1 — B3 (S11)99 Ba
2N, (I, ® 3} (S11)11) dvec (By) + 2N, (I, ® By (S11)91) dvec (8y)
= —2N, (I, ® 3 (S11)15) dvec (B,) — 2N, (I, ® By (S11) ) dvec (B,)

2N, [(I, ® B (S11)y) + (L, ® B (S11)91)] dvec (B4)
= 2N, [(I, ® B (S11)1y) + (Ir ® By (S11),,)] dvec (By)
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LN, [(I, ® B (S11)11)

—LN, [(I, ® £} (S11)10) +

+ (I, ® 03 (S11)91)] dvec (B4)

which is an ﬁr;“—ll x 1 vector. Next let D = 5105&31501, then

ﬁlDﬁ = FT — ﬁllDllﬁl = FT

= 31 D123,

- 6/2D2161

(I, ® By (S11)99)] dvec (5B,)

- 6/2D2262

2N, (I, ® 3\ D11) dvec (8;) + 2N, (I, ® 35Da1) dvec (8;)

= dvec(T',) —

2N, [(I, ® 81 D11) +

dvec (I';) — 2N, [(

2N, (I, ® B D12) dvec (35) — 2N, (

(I ® 35 D2 )] dvec (3;)

I, ® (3 D12)

LN, (I, ® 51 D11)

= _ENT [(Ir X ﬁ/1D12) +
which is an =1

2

[ LN, [1]

LN, [2 ] dvec (83,) = —

where [1] and [2] are full rank r?

r(r+

of rank

[ LN, [3]
LN, [4]

+ (I, ® B35,Ds1)] dvec (3,)
(I ® 85 Das)] dvec (5,)

x 1 vector. Combine these expressions as

1 dvec (8,)

I, ® /8/2D22) dvec ()

+ (I, ® ByDa)] dvec (3,)

. 1 : 1
, N, is r? ><r21rankﬁil LISMXTQ

ﬁ’;r—ll,EN[]lsMxr ofrankJQ—land

1
2
3

[
[
[
[4

]
]
]
]
p-|

Therefore l

zero. Thus,

Dy,
Dy,

LN, [1]
LN, [2]

(I, ® 81 (S11)11) +

X 51D11)

(L
(I ®51 (Sll) 12
(

I, ® 31 D1s) +

dvec (f,) = —

]isﬂxr

|

2

LN,

(I ® B35 (S11)1) =
I, ® 34Dy
(I,
+ (I, ® 5D

) =
® B (
) =

1:[01 D, | Snzl

(
(S
(S

5 U Lis T(TQ U s 12 of rank T(T U so LN, [1] is

11)
)

11

n (S
21 (Sll)

] duec (B,)

r(r+1)

x 12 of rank

(I @ B (S11),)
(]r ®5/D1)

Si1)g9) =

I, ® (3'Ds)

(I @ B (S11),)

] = [ (S11); (S11)q }

and has rank less than r? with probability



and therefore,

Dlueclp) _ [ L) L,

which is 7% X (p — r)r of less than full rank with probability zero. That
this matrix is of full rank is important to ensure the Jacobian matrix has
full rank. The other matrices in the Jacobian matrix have relatively simple
structures and so it is not difficult to determine they have full rank. Using
the above results, we have,

sty = o (M )l (o N R ] [

Next,

2

0 (vec (I1))
0 (vec (B,))

_1 1

From the transformation in (8), we have g = S;,°T'; and 3, = SjTIs
Where, Pl = UlT, FQ = UQTl, F’1F1 = ]r; F/2F2 = lp—r and I FQ = Orx(p—r)~
Therefore we can form the orthonormal matrix I' = [I'; I'y], such that I'T' =
I,and X = (I +T)"" (I = T) is skew-symmetric, that is, X = —X’ This or-
thomorphic transformation between I and X implies I' = (I + X ) (I - X )

(Olkin and Sampson, 1972). We can now find an expression for the matrix
of partial derivatives

0 (vec(8L)) _ O(vec(B,)) O (vec (1;2)) O0(vec(X)) 0 (vec(I'r))
8 (vec (3)) 9 (vec (T)) d(vec(X))
— (Lo sh) B (1w 1)

= [T\ N ® ST

where

0 (vec (I'))’ P 0 (vec (B
9 (vec () 0 (vee (X))
D(wec(R)) P ey T
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A, is the matrix comprised of the last p(p — r) rows of
A ~\—1
l o 1 — [(1p+r)’®(1p+x) }
and Bj is the matrix comprised of the first pr columns of
~\/ 1
[By By] = — [(IerX) ® (I, +T) } .

Finally, let m = k + 22+

Ovec (II)

Guec ()] (o' ® 517'8,)

where for an n x n matrix A, D,vech (A) = vec (A). From the above expres-
sions:

T (IT: (By, 0 \))| = | dvec (I1) Ovec (I1) Ovec (I1) ' ‘

(Ovec () (Ovec(By)) (Qvec(N))
When \ = 0, then the Lp x Lp matrix

Ovec (IT) dvec (I1) Ovec (II)
(Ovec (o)) (Ovec(By)) (Ovec(N))

1S

oty = o)
(;;ic((ﬂfg)/ = (@®1,) HI ® ( OTIXp(pTT) )] + []T ® ( O(pim )1 E]
g:%g[)))/ = (Sa) ®5:'8,)

and

s-- [0V (i)

from which it should be apparent |J|y=o| # 0.
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8 Appendix II: Singular Value Decomposi-
tions of Nonsquare .

Here the SVD of the (p x L) matrix

_1 -
=S 2¢" %% = o+ S5l A, S
is presented. First consider the case where L > p. Let U = [ Uy Uy },
PXDp PXT  px(p—r)
v=[n w W

x| DXt Lx(p-r) Lx(L-p)
r) X (p — r) respectively. Make the following transformation:

, and S; and S, be diagonal r x r and (p —

V/
X S; 0 0 L
S U§V/=[U1 UQ][al g 0] Vy (26)
9 ‘/3/
.V./
TS, 0 0 L
= [wr Ug}[o—ls 01 v
9 ‘/3/

= UTT'S,V| + U:S,V;
where the r x r orthogonal matrix 7" is chosen such that 7T = TT" = I and
T’U{Sﬁ%DS;l% UT =T =diag(yy, .- 7,)
where D is a p X p positive definite, symmetric matrix. Therefore,
b= ST a=TS, VIS
Next, define the following matrices

T{U3SH Uy = Ay = diag(ny, ..., )

VIl ot o .
TQI l ‘/2, ‘| 5112 S1050015015112 [‘/2 ‘/3] T2 = AL—'I‘ - dlag(ﬁa crey CL—'I‘)
3
1 — — — T21 T22
so that T} is (p T) 8 (p T) and (L,T;ZQ(L,T) |: (L=r)x(p—r) (L—r)x(L—p) |~

The last term in (26) becomes,
V/
Uzﬁz‘/é - UQT{TlﬁQTélTQ l ‘/2, ‘|
3
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so that from (13)
S, = S’ UaTy = v, = SpURTY,
A= TyS,Ty,

and

=
Nl=

~ / ~
QLE:TQ[%]E

Vi e
‘/,3, = QL:TQ[ 2]2 .

Vi
u, U Us ]

Next, consider the case where p > L. Let U = [pw ox(Lor) px(o L)

pXp
L{X/L: { L‘ér LXX;{T) and S; and S, be diagonal r x r and (L —r) x (L —

r) respectively containing the singular values of ¢*. Make the following
transformation:

S, 0 o
= USVI=|U U Us||0 3, lvl] (27)
0 0 2
'8, 0 i
:[UlT U, U3] 0o S, [vl]
0 0 2

= UTT'S,\V, + U8,V
where the r X r orthogonal matrix 7" is chosen such that 7T = TT" = I and
TS E DS EUT =T = diag(v,, ... v.)
where D is again a p X p positive definite, symmetric matrix. Therefore,
b=SEUT  a=TS,VISh
Next, define the following matrices

U, _ .
Tll [ UZ ‘| Slll [ U2 U3 }Tl = AP—T = dlag(nh”'unpfvﬂ)

TyVaS112S10800 So1S112 VaTy = Ap—p = diag(s1, ..., Sp—r)

sothat 17 = [ T gr and Ty is (L —r) x (L — 7).

(p—r))((p_r) (piT)X(LfT) (pr)X(pr)
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The last term in (27) becomes,
U>8,Vy = | Us Uy | T{T11 Sy TaT3Vy
so that from (13)
-1 —% ! % !
Sy =5n [Uz U3}T1 = 1%:511[[]2 U3}T1a

A= T11§2T2a

and B . )
o= Té‘/éza = Q] = Té‘/gz_E
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