29 research outputs found

    Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells

    Get PDF
    l-Arginine is taken up via the cationic amino acid transporters (system y+/CATs) and system y+L in human umbilical vein endothelial cells (HUVECs). l-Arginine is the substrate for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but nothing is known regarding modulation of system y+/CATs and system y+L activity, and eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates l-arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe were subjected to 0.1-20 mmol/L NH4Cl pulse assay to generate pHi 7.13-6.55. Before pHi started to recover, l-arginine transport (0-20 or 0-1000 μmol/L, 10 s, 37 °C) in the absence or presence of 200 μmol/L N-ethylmaleimide (NEM) (system y+/CATs inhibitor) or 2 mmol/L l-leucine (systemy+L substrate) was measured. Protein abundance for eNOS and serine1177 or threonine495 phosphorylated eNOS was determined. The results show that intracellular acidification reduced system y+L but not system y+/CATs mediated l-arginine maximal transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and eNOS serine1177 phosphorylation. Thus, system y+L activity is downregulated by an acidic pHi, a phenomenon that may result in reduced NO synthesis in HUVECs

    Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles

    No full text
    As a novel strategy to overcome some of the therapeutic disadvantages of 6-thioguanine (TG) and 6-mercaptopurine (MP), we propose the inclusion of these drugs in beta cyclodextrin (beta CD) to form the complexes beta CD-TG and beta CD-MP, followed by subsequent interaction with gold nanoparticles (AuNPs), generating the ternary systems: beta CD-TG-AuNPs and beta CD-MP-AuNPs. This modification increased their solubility and improved their stability, betting by a site-specific transport due to their nanometric dimensions, among other advantages. The formation of the complexes was confirmed using powder X-ray diffraction, thermogravimetric analysis and one and two-dimensional NMR. A theoretical study using DFT and molecular modelling was conducted to obtain the more stable tautomeric species of TG and MP in solution and confirm the proposed inclusion geometries. The deposition of AuNPs onto beta CD-TG and beta CD-MP via sputtering was confirmed by UV-vis spectroscopy. Subsequently, the ternary systems were characterized by TEM, FE-SEM and EDX to directly observe the deposited AuNPs and evaluate their sizes, size dispersion, and composition. Finally, the in vitro permeability of the ternary systems was studied using parallel artificial membrane permeability assay (PAMPA)

    Gold nanoparticles stabilized with βcyclodextrin-2-amino-4-(4-chlorophenyl)thiazole complex : a novel system for drug transport

    No full text
    While 2-amino-4-(4-chlorophenyl)thiazole (AT) drug and thiazole derivatives have several biological applications, these compounds present some drawbacks, such as low aqueous solubility and instability. A new complex of βCD-AT has been synthesized to increase AT solubility and has been used as a substrate for the deposit of solid-state AuNPs via magnetron sputtering, thus forming the βCD-AT-AuNPs ternary system, which is stable in solution. Complex formation has been confirmed through powder X-ray diffraction and 1D and 2D nuclear magnetic resonance. Importantly, the amine and sulfide groups of AT remained exposed and can interact with the surfaces of the AuNPs. The complex association constant (970 M-1) has been determined using phase solubility analysis. AuNPs formation (32 nm average diameter) has been studied by UV-Visible spectroscopy, transmission/scanning electron microscopy and energy-dispersive X-ray analysis. The in vitro permeability assays show that effective permeability of AT increased using βCD. In contrast, the ternary system did not have the capacity to diffuse through the membrane. Nevertheless, the antibacterial assays have demonstrated that AT is transferred from βCD-AT-AuNPs, being available to exert its antibacterial activity. In conclusion, this novel βCD-AT-AuNPs ternary system is a promising alternative to improve the delivery of AT drugs in therapy

    Optimizing Dacarbazine Therapy: Design of a Laser-Triggered Delivery System Based on β-Cyclodextrin and Plasmonic Gold Nanoparticles

    No full text
    Dacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However, present limitations on its performance are related to its low solubility, instability, and non-specificity. To overcome these drawbacks, DB was included in β-cyclodextrin (βCD), which increased its aqueous solubility and stability. This new βCD@DB complex has been associated with plasmonic gold nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic inclusion into βCD, with an association constant of 80 M−1 and a degree of solubilization of 0.023, where βCD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-βCD@DB nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of −29 mV, and an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from this platform in a controlled manner over time, reaching a concentration of 56 μg/mL (43% of the initially loaded amount), which, added to the previous data, validates its potential for drug delivery applications. Therefore, the novel nanosystem based on βCD, AuNPs, and PEG is a promising candidate as a new nanocarrier for DB

    Gold Nanoparticles Interacting with β‑Cyclodextrin–Phenylethylamine Inclusion Complex: A Ternary System for Photothermal Drug Release

    No full text
    We report the synthesis of a 1:1 β-cyclodextrin–phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses (<sup>1</sup>H and ROESY). The stability constant of the IC (760 M<sup>–1</sup>) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV–vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest
    corecore