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Abstract  

L-Arginine is taken up via the cationic amino acid transporters (system y+/CATs) and 

system y+L in human umbilical vein endothelial cells (HUVECs). L-Arginine is the substrate 

for endothelial NO synthase (eNOS) which is activated by intracellular alkalization, but 

nothing is known regarding modulation of system y+/CATs and system y+L activity, and 

eNOS activity by the pHi in HUVECs. We studied whether an acidic pHi modulates L-

arginine transport and eNOS activity in HUVECs. Cells loaded with a pH-sensitive probe 

were subjected to 0.1-20 mmol/L NH4Cl pulse assay to generate pHi 7.13-6.55. Before pHi 

started to recover, L-arginine transport (0-20 or 0-1000 µmol/L, 10 s, 37ºC) in the absence or 

presence of 200 μmol/L N-ethylmaleimide (NEM) (system y+/CATs inhibitor) or 2 mmol/L L-

leucine (systemy+L substrate) was measured. Protein abundance for eNOS and serine1177 or 

threonine495 phosphorylated eNOS was determined. The results show that intracellular 

acidification reduced system y+L but not system y+/CATs mediated L-arginine maximal 

transport capacity due to reduced maximal velocity. Acidic pHi reduced NO synthesis and 

eNOS serine1177 phosphorylation. Thus, system y+L activity is downregulated by an acidic 

pHi, a phenomenon that may result in reduced NO synthesis in HUVECs.  

 

Keywords: L-arginine transport; intracellular pH; system y+L; system y+; endothelium 
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Abbreviations 

 

pHo  Extracellular pH 

pHi  Intracellular pH 

4F2hc  Heavy chain of the cell surface antigen 4F2 

HUVECs Human umbilical vein endothelial cells 

HPAEC Human pulmonary artery endothelial cells 

RAEC  Rat aorta endothelial cells 

hENT1/2 human equilibrative nucleoside transporters 1 and 2  

GDM  Gestational diabetes mellitus 

hCATs  Human cationic amino transporters 

NO  Nitric oxide 

NOS  Nitric oxide synthase 

eNOS  Endothelial nitric oxide synthase 

NH4Cl  Ammonium chloride  

DAF-FM 4-amino-5-methylamino-2',7'-difluorofluorescein 

L-NAME NG-nitro-L-arginine methyl ester 

BCECF-AM Bicarboxyethyl-5,6-carboxyfluorescein acetoxymethyl ester 

NEM  N-ethylmaleimide 
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1. Introduction 

 A variety of membrane transport systems removing metabolic substrates from the 

extracellular medium are expressed in the foetoplacental endothelium [1-4]. The activity of 

some of these transport systems is modulated by changes in the extracellular (pHo) and 

intracellular (pHi) pH [5,6]. The cationic amino acid L-arginine, the substrate for the synthesis 

of nitric oxide (NO) via the endothelial NO synthase (eNOS) [7,8], is taken up mainly by the 

cationic amino acid transporters (CATs, also referred as system y+ or system y+/CATs) family 

[4] and system y+L in human umbilical vein endothelial cells (HUVECs) [2,9,10]. System 

y+/CATs corresponds to a family of five proteins of which mainly the high affinity (Km ~100-

250 µmol/L) hCAT-1 and hCAT-2B isoforms are expressed in HUVECs [4,11]. System y+L 

activity results from heterodimers formed by the interaction of the heavy chain of the cell 

surface antigen 4F2 (4F2hc) with the light chains 4F2-lc2 (or y+LAT-1) or 4F2-lc3 (or y+LAT-

2) [1,11-14]. System y+L activity accounts for L-arginine transport with a very high affinity 

(Km ~1-20 µmol/L) and small and large neutral amino acids, such as L-leucine, requiring 

extracellular sodium in HUVECs [4,9]. System y+/CATs and system y+L activity are reported 

as independent of a change in pHo in mammalian cells [11,14]. However, there are no reports 

addressing whether the activity of these membrane transport systems is modulated by the pHi.  

Increased L-arginine transport mediated by system y+/CAT-1 [15] and system y+L [10] 

results in higher eNOS activity in HUVECs and other cell types [16,17]. Interestingly, 

intracellular alkalization activates eNOS in HUVECs [18], human pulmonary arterial 

endothelial cells (HPAECs) [19], and rat aorta endothelial cells (RAECs) [20]. However, it is 

unknown whether eNOS activation in response to a change in the pHi leading to an alkaline or 

acidic intracellular environment associated with system y+/CATs and system y+L transport 

activity in human endothelial cells. Intracellular alkalization due to lower NHE1 activity 
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reduced the transport of the endogenous nucleoside adenosine in HUVECs [6]. Since 

adenosine is a vasodilator in most vascular beds including the foetoplacental circulation [21] 

via increasing the L-arginine transport and NO synthesis in HUVECs [22], and dysfunction of 

the foetoplacental vasculature is addressed as the cause of altered umbilical vein blood flow in 

growth restricted foetus [23,24], it is likely that changes in the pHi in HUVECs alters the 

dynamics of NO-dependent dilation mechanisms of the umbilical vein therefore limiting the 

delivery of nutrients to the foetus [25]. This study aimed to characterise the role of a change in 

pHi on L-arginine transport mediated via system y+/CATs and system y+L and on NO 

synthesis in HUVECs.  

 

2. Material and methods 

2.1 Antibodies and materials 

Primary monoclonal mouse anti-eNOS phosphorylated at serine1177, anti-eNOS 

phosphorylated at threonine495, and anti-ß-actin were from Sigma Aldrich (St Louis, MO, 

USA). Primary monoclonal mouse anti-total eNOS antibody and secondary horseradish 

peroxidase-conjugated goat anti-mouse antibodies were from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA). For isolation of HUVECs from umbilical cords, Collagenase Type II 

from Clostridium histolyticum (Boehringer, Mannheim, FRG) was used. Medium M199, 

newborn (NBCS) and fetal calf (FCS) sera, L-glutamine, and penicillin-streptomycin were 

from Gibco Life Technologies (Carlsbad, CA, USA). L-[3H]Arginine and D-[3H]mannitol 

were from NEN (Dreieich, FRG). NG-Nitro-L-arginine methyl ester (L-NAME) was from 

Sigma Aldrich, Immobilon-P polyvinylidene difluoride membranes from BioRad Laboratories 

(Hertfordshire, UK), and the fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein 

(DAF-FM) from Molecular Probes (Leiden, The Netherlands). 
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2.2 Study group 

 This study included samples collected from 23 full-term normal pregnancies from the 

Hospital Clínico UC-CHRISTUS (HCUC-C) in Santiago de Chile and Clínica de la Mujer 

(CLM) in Antofagasta (Chile). Pregnant women included in this study did not smoke or 

consume drugs or alcohol and had no intrauterine infection or any other medical or obstetrical 

complications. The ethnicity of patients involved in this study was Hispanic. The investigation 

conforms to the principles outlined in the Declaration of Helsinki. Ethics Committee approvals 

from the Faculty of Medicine of the Pontificia Universidad Católica de Chile and CLM and 

informed written consent of patients were obtained.  

 

2.3 Human placenta and umbilical cords  

 Placentas were collected at delivery on ice and transferred to the laboratory until use 

15-30 min later. Middle sections of umbilical cords (100-120 mm length) were dissected into 

200 mL phosphate-buffered saline (PBS) solution (mmol/L: 130 NaCl, 2.7 KCl, 0.8 Na2HPO4, 

1.4 KH2PO4, pH 7.4, 4ºC) until use 6-12 h later for isolation of endothelial cells [6,26]. 

 

2.4 Cell culture 

 This study was done in primary cultures of HUVECs from normal pregnancies. The 

reason why selecting this type of cells is because (i) they are from the umbilical vein which 

carries feotal blood after crossing the placenta circulatory bed towards the foetus body with 

the umbilical vein blood being rich in oxygen and nutrients and unloaded of toxins and waste 

from the foetus circulation, (ii) umbilical vein blood carries signalling molecules that are 

transferred from the mother through the placenta into the foetal circulation, (iii) molecules 
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synthesised and released within the placenta tissue are available at the umbilical vein blood 

thus transferring regulatory signals from the placenta to this vessel by changing, for example, 

the offering of nutrients to the growing foetus, and (iv) HUVECs release extracellular vesicles, 

including exosomes, that could potentially alter the downstream vasculature (i.e., the foetal 

circulation) altering or changing the function or phenotype of the endothelium in the foetal 

vascular bed [27,28]. HUVECs were isolated by collagenase digestion (0.25 mg/mL 

collagenase) from umbilical cords obtained at delivery from normal pregnancies and cultured 

(37°C, 5% CO2) in 1% gelatin-coated Petri dishes (100 mm diameter) up to passage 3 in 

primary culture medium (PCM; M199 containing 5 mmol/L D-glucose, 10% NBCS, 10% 

FCS, 3.2 mmol/L L-glutamine and 100 U/mL penicillin-streptomycin) as reported [6,26]. 

Sixteen hours prior experiments the incubation medium was changed to M199 medium 

containing 0.25% NBCS and 0.25% FCS. Experiments were in the absence or presence of NG-

nitro-L-arginine methyl ester (L-NAME, 100 μmol/L, NOS inhibitor) and cell viability was 

assayed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide assay (Sigma-

Aldrich) as reported [6].  

 

2.5 pHi measurement and recovery  

 Cells were loaded (10 min, 37°C) with the fluorescent pH-sensitive probe 2,7-

bicarboxyethyl-5,6-carboxyfluorescein acetoxymethyl ester (BCECF-AM, 12 mol/L) as 

described [6]. Probe excess was removed rinsing (x3) with control solution (CS) (mmol/L: 

NaCl 145, KCl 5, NaH2PO4 1 Na2SO4 1, CaCl2 1.8, MgCl2 1, HEPES 30, D-glucose 5, pH 7.4, 

37ºC). Fluorescence ratios were registered every 0.5-seconds interval. The pHi was estimated 

using standard calibration curves with 10 µmol/L nigericin and high-K+ in a calibrating 
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solution (pH 6.2, 7.2, 8.2) as described [6]. The pHi recovery was examined by the NH4Cl 

pulse technique [6]. After the basal pHi was stabilized (3 min) cells were exposed (2 min) to 

CS with 0.1, 1, or 20 mmol/L NH4Cl (NH4Cl/CS solution). Cells were then rinsed with 

NH4Cl-free CS, and cell viability assayed as above.  

 

2.6 Uptake of L-arginine 

 Since pHi recovery started after 25 s of removal of NH4Cl/CS, transport assays in CS 

were performed at 20 s (37ºC). To identify the involvement of system y+/CATs and system 

y+L on L-arginine transport the cells were incubated with CS with or without 200 µmol/L N-

ethylmaleimide (NEM) (a general inhibitor of system y+/CATs) [1,11], 2 mmol/L L-leucine (a 

neutral amino acid that competes with L-arginine for system y+L) [1,11], or NEM + L-leucine 

as previously described [10]. Overall uptake at 2 and 100 μmol/L L-arginine (6 μCi/mL L-

[3H]arginine, 20 s, 37°C) for system y+L and system y+/CATs, respectively, was measured in 

confluent cells in CS as described [10,26]. The fraction of uptake inhibited by NEM was 

considered as system y+/CATs mediated, and the portion of uptake inhibited by L-leucine in 

cells coincubated with NEM to block system y+/CATs contribution was regarded as system 

y+L mediated [1,10,11]. 

 

2.7 Kinetics of L-arginine transport 

Overall 0-20 μmol/L or 0-1000 μmol/L L-arginine transport (for system y+L and 

system y+/CATs, respectively) was measured in CS as above. Overall transport of L-arginine 

was defined as the sum of a saturable component plus a non-saturable, linear component of 

transport in the ranges of L-arginine concentrations used in this study (hereafter referred as a 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

9 

KD value defined by m•[Arg], where m corresponds to slopes of lineal phases of transport at a 

given L-arginine concentration [Arg]) [26]. Cell monolayers were rinsed with ice-cold CS to 

terminate tracer uptake.  

The initial rate of transport (i.e., linear uptake up to 10 s) was derived from the slope of 

the linear phases of L-arginine transport. Values for transport were adjusted to the one phase 

exponential association equation considering the least squares fit: 

 

𝑣𝑖 = 𝑉𝑚 ∙ (1-𝑒-(k∙t)) 

 

where vi is initial velocity, Vm is mayor velocity at a given time (t) and L-arginine 

concentration, and e and k are constants. Overall L-arginine transport at initial rates was 

adjusted to the Michaelis-Menten hyperbola plus a nonsaturable, linear component (KD) as 

described [26]. The saturable transport of L-arginine was derived by subtracting the m•[Arg] 

components from overall transport, and the transport kinetic parameters maximal velocity 

(Vmax) and apparent Michaelis-Menten constant (Km) of transport were calculated [26].  

The relative contribution of system y+L and system y+/CATs (y+L/y+F) to total transport 

(i.e., y+L plus y+/CATs mediated transport) in cells non-treated (–NH4) or treated (+NH4) with 

NH4Cl was estimated from Vmax/Km values by: 

 

𝐹 −𝑁𝐻4 
𝑦+𝐿/𝑦+ =

𝑉 𝑚𝑎𝑥 ∙ 
𝑦+𝐿 𝐾 𝑚 

𝑦+

𝐾 𝑚 ∙ 
𝑦+𝐿 𝑉 𝑚𝑎𝑥 

𝑦+
 

 

or 
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𝐹 +𝑁𝐻4 
𝑦+𝐿/𝑦+ =

𝑉 𝑚𝑎𝑥 ∙ 
𝑦+𝐿 𝐾 𝑚 

𝑦+

𝐾 𝑚 ∙ 
𝑦+𝐿 𝑉 𝑚𝑎𝑥 

𝑦+
 

 

where y+LVmax and y+LKm are kinetic parameters for system y+L-saturable transport, and y+Vmax 

and y+Km for system y+/CATs saturable transport.  

The relative effect of NH4Cl on transport activity via system y+L (1/-NH4/+NH4Fy+L) or 

system y+/CATs (1/-NH4/+NH4Fy+) was estimated by: 

 

1

𝐹 𝑦+𝐿 
−𝑁𝐻4/+𝑁𝐻4

=
𝑉 𝑚𝑎𝑥 ∙ 

+𝑁𝐻4 𝐾 𝑚 
−𝑁𝐻4

𝑉 𝑚𝑎𝑥 ∙ 
−𝑁𝐻4 𝐾 𝑚 

+𝑁𝐻4
 

 

or  

1

𝐹 𝑦+ 
−𝑁𝐻4/+𝑁𝐻4

=
𝑉 𝑚𝑎𝑥 ∙ 

+𝑁𝐻4 𝐾 𝑚 
−𝑁𝐻4

𝑉 𝑚𝑎𝑥 ∙ 
−𝑁𝐻4 𝐾 𝑚 

+𝑁𝐻4
 

 

where -NH4Vmax and -NH4Km, or +NH4Vmax and +NH4Km are kinetic parameters for transport in cells 

non-treated or treated with NH4Cl, respectively [6].  

 The efficiency of the effect of a change in the pHi (EpHi) on the uptake at a fixed 

concentration (UEpHi) or the maximal transport capacity (Vmax/KmEpHi) for a range of 

concentrations of L-arginine via system y+/CATs and system y+L was estimated by: 

 

  
𝑈 𝐸 𝑝𝐻𝑖 =

  
−𝑁𝐻4 𝑈 −  𝑈 

+𝑁𝐻4

  −𝑁𝐻4 𝑝𝐻𝑖 −   +𝑁𝐻4 𝑝𝐻𝑖
 

 

or 
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𝑉𝑚𝑎𝑥/𝐾𝑚 𝐸 𝑝𝐻𝑖 =

  
−𝑁𝐻4 𝑉𝑚𝑎𝑥/𝐾𝑚 −   

+𝑁𝐻4 𝑉𝑚𝑎𝑥/𝐾𝑚

  −𝑁𝐻4 𝑝𝐻𝑖 −   +𝑁𝐻4 𝑝𝐻𝑖
 

 

where uptake (U) at a given concentration of L-arginine (2 or 100 µmol/L in this study) was 

measured in the absence (–NH4) or presence (+NH4) of NH4Cl at basal pHi (-NH4pHi) or pHi in 

the presence of NH4Cl (+NH4pHi). For a range of concentrations of L-arginine (0-20 or 0-1000 

µmol/L in this study), the values for Vmax/Km were used. Each transport assay was run in 

duplicate with transport activity expressed as pmol/µg protein/minute. Values for UEpHi and 

Vmax/KmEpHi are expressed as a change in the pmol/µg protein/minute relative to 1. Radioactivity 

in 0.5 N KCl cell digests was determined by liquid scintillation counting, and uptake was 

corrected for D-[3H]mannitol disintegrations per minute (d.p.m.) in the extracellular space 

[26]. 

 

2.8 NOS activity 

NOS activity was assayed by quantification of the intracellular content of L-citrulline 

by high-performance liquid chromatography in confluent HUVECs in the absence or presence 

of 100 μmol/L L-NAME, as reported [15,26].  

 

2.9 Western blot for eNOS 

Total protein was obtained from confluent cells washed twice with ice-cold PBS and 

harvested in 100 μL of lysis buffer composed by 63.7 mmol/L Tris/HCl (pH 6.8), 10% 

glycerol, 2% sodium dodecylsulphate, 1 mmol/L sodium orthovanadate, 50 mg/mL leupeptin, 

and 5% 2-mercaptoethanol, as described [26]. Cells were sonicated (6 cycles, 5 s, 100 Watts, 
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4ºC), and total protein was separated by centrifugation (14000 g, 15 min, 4°C). Proteins (60 

µg) were separated by polyacrylamide gel (10%) electrophoresis and transferred onto 

Immobilon-P polyvinylidene difluoride membranes. The proteins were then probed against 

total eNOS (1:500 dilution, 12 h, 4ºC), eNOS phosphorylated at serine1177 (PSer1177-eNOS, 

1:1000 dilution, 12 h, 4ºC), eNOS phosphorylated at threonine495 (PThr495-eNOS, 1:1000 

dilution, 12 h, 4ºC), and ß-actin (1:3000, 1 h, room temperature). Membranes were rinsed in 

Tris buffer saline-Tween (TBS-T) and incubated (1 h) in TBS-T/0.2% BSA containing 

secondary horseradish peroxidase-conjugated antibodies. Proteins were detected by enhanced 

chemiluminescence (film exposure time was 1 min) in a ChemiDoc-It 510 Imagen System 

(UVP, LCC Upland, CA, USA) and quantified by densitometry [26]. 

 

2.10 Statistical analysis 

 The sample size was estimated considering a power of 80% to detect a difference 

between groups (by a two-sided alpha level of 0.05). Values for clinical parameters are given 

as mean ± S.D. For in vitro assays the values were mean ± S.E.M., where n indicates the 

number of different biological samples and corresponding cell cultures with 3-4 replicates per 

experiment. Comparisons between two groups were performed using Student’s unpaired t-test 

and between more than two groups by analysis of variance (ANOVA, two-ways). If the 

ANOVA demonstrated a significant interaction between variables, post hoc analyses were 

performed by the multiple-comparison Bonferroni test. The statistical software GraphPad 

InStat 3.1 and GraphPad Prism 7.0d (GraphPad Software Inc., San Diego, CA, USA) was used 

for data analysis. P<0.05 was considered statistically significant.    
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3. Results 

3.1 Study group 

Pregnant women included in this study were with normal pregnancy, normotensive, 

normal fasting glycaemia at delivery, singleton, and of similar age and height (Table 1). 

Weight and body mass index (BMI) at delivery were higher compared with the first 

determination early in pregnancy (9-16 weeks of gestation) where women were normoweight 

(BMI <25 kg/m2). The total gestational weight gain between early in pregnancy and delivery 

was 11.9 ± 0.7 kg with a BMI variation of 0.6 kg/m2 reaching BMI values that were >25-29.9 

kg/m2.  

 

3.1. Basal pHi  

 Exposure of cells to 20 mmol/L NH4Cl increased the pHi value, and NH4Cl removal 

caused rapid acidification (~1 second, pHi = 6.51 ± 0.04) lasting for ~25 s before a significant 

pHi recovery started reaching initial pHi value in ~6 min (Figure 1A). The basal pHi value 

(7.19 ± 0.03) was reduced by NH4Cl in a concentration-dependent manner (half-maximal 

effective concentration (EC50) = 1.29 ± 0.03 mmol/L NH4Cl, equivalent to pHi = 6.75 ± 0.02) 

(Figure 1B), without altering the cell survival (97-99% alive cells between 0.1-20 mmol/L 

NH4Cl) (not shown), confirming previous observations in this cell type [6].  

 

3.2. System y+/CATs and system y+L mediated uptake of L-arginine 

 In the absence of NH4Cl (i.e., at basal pHi), the overall uptake of 100 µmol/L L-

arginine was inhibited mainly by NEM (69 ± 6%), with a minor inhibition caused by L-leucine 

(25 ± 3%) but blocked in cells coincubated with NEM + L-leucine (Figure 1C). In cells 

exposed to 20 mmol/L NH4Cl and washed with CS solution (i.e., pHi ~6.5), the overall uptake 
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was reduced compared with cells in the absence of NH4Cl in a proportion (0.14 ± 0.02 

pmol/µg protein/minute) that was similar in cells incubated with L-leucine in the absence of 

NH4Cl (0.15 ± 0.06 pmol/µg protein/minute). In the presence of NH4Cl, the uptake of L-

arginine was inhibited by NEM or NEM + L-leucine in a similar proportion (0.42 ± 0.02 and 

0.44 ± 0.02 pmol/µg protein/minute, respectively), but NH4Cl did not alter the uptake of L-

arginine inhibited by L-leucine in the absence of this salt. Uptake of L-arginine mediated by 

system y+/CATs predominates over a minor contribution of system y+L at 100 µmol/L L-

arginine (Figure 1D).  

The overall uptake at 2 µmol/L L-arginine (0.17 ± 0.05 pmol/µg protein/minute) in the 

absence of NH4Cl was lower (67 ± 3%) compared with 100 µmol/L L-arginine (Figure 1E). 

The uptake detected at this concentration of L-arginine was similar to the fraction of uptake 

inhibited by L-leucine in 100 µmol/L L-arginine (0.15 ± 0.06 pmol/µg protein/minute). 

Overall uptake was unaltered by NEM but blocked by L-leucine or NEM + L-leucine. In the 

presence of NH4Cl the 2 µmol/L L-arginine uptake was abolished in all experimental 

conditions. Uptake of L-arginine mediated by system y+L accounted for 2 µmol/L L-arginine 

in HUVECs (Figure 1F). NH4Cl did not alter 100 or 2 µmol/L L-arginine uptake via system 

y+/CATs. However, the system y+L activity in the presence of NH4Cl at these two 

concentrations of L-arginine was abolished.  

 

3.3. pHi-dependent uptake of L-arginine via system y+L/CATs and system y+L 

Overall uptake of 100 µmol/L L-arginine was unaltered by 0.1 or 1 mmol/L NH4Cl in 

the absence of NEM and by 0.1 mmol/L NH4Cl in the presence of NEM, but reduced by 20 

mmol/L NH4Cl in the absence or presence of NEM (Figure 2A). Incubation of cells with NEM 

resulted in a NH4Cl concentration-dependent inhibition of uptake (EC50 = 0.32 ± 0.04 mmol/L 
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NH4Cl). Overall uptake of 2 µmol/L L-arginine in the presence of NEM was inhibited by 

NH4Cl (EC50 = 0.31 ± 0.0.3 mmol/L NH4Cl), but uptake was unaltered in cells incubated with 

NEM + L-leucine (Figure 2B). Uptake mediated by system y+/CATs was not significantly 

altered by NH4Cl (Figure 2C) and independent of the resulting pHi (Figure 2D). However, 

uptake mediated by system y+L was reduced in a concentration-dependent manner by NH4Cl 

(EC50 = 0.29 ± 0.03 mmol/L NH4Cl) and the resulting acidic pHi (EC50 = 6.89 ± 0.11 pHi).  

The efficiency of inhibition of a change in pHi (∆pHi) on 2 µmol/L L-arginine uptake 

(UEpHi) mediated via system y+L was higher at the smaller variation of pHi (∆pHi 0.06 in this 

study) and less pronounced but reaching comparable values at higher variations of pHi (∆pHi 

0.38 and 0.69 in this study) from the basal pHi value in HUVECs (Figure 2E). However, the 

UEpHi for uptake via system y+/CATs was unaltered by the pHi. The UEpHi for system y+L 

compared with system y+/CATs mediated uptake was higher at pHi 7.19 compared with 

uptake at pHi 6.81 or 6.5 (Figure 2F).  

 

3.4. pHi-dependent system y+/CATs and system y+L transport kinetics 

 In the absence of NH4Cl, the overall transport of L-arginine in the range of 0-1000 

µmol/L was semi-saturable, inhibited mainly by NEM but marginally inhibited by L-leucine, 

and blocked by NEM + L-leucine (not shown) as previously reported [10]. The derived 

transport obtained after subtracting the linear, non-saturable component from overall transport 

(i.e., KD), was saturable in all experimental conditions and adjusted to a first order linear 

regression in Eadie-Hofstee plots as reported [10,15]. Incubation of cells with increasing 

concentrations of NH4Cl did not alter the KD for overall transport and the Vmax, Km, or Vmax/Km 

for saturable transport in this range of L-arginine concentrations (Table 2). 
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  Overall transport of L-arginine in the range of 0-20 µmol/L L-arginine was semi-

saturable, unaltered by NEM but abolished by L-leucine or NEM + L-leucine (not shown) as 

previously reported [10]. The derived saturable L-arginine transport was unaffected by NEM 

but blocked by L-leucine and NEM + L-leucine (Figure 3A). A first-degree regression line 

well fitted saturable transport at different pHi values in Eadie-Hofstee plots (Figure 3B). 

Increasing concentrations of NH4Cl did not alter the KD for overall transport but reduced the 

Vmax (Table 2) and Vmax/Km (Figure 3C) without changing the Km for saturable transport.   

The efficiency of inhibition of a given ∆pHi in 0-20 µmol/L L-arginine transport 

kinetic parameters (Vmax/KmEpHi) for system y+L was also higher at the smaller variation of pHi 

(∆pHi 0.06) and less pronounced but reaching comparable values at higher variations of pHi 

(∆pHi 0.38 and 0.69) from the basal pHi (Figure 3D). The pHi unaltered the Vmax/KmEpHi for 

transport via system y+/CATs. The Vmax/KmEpHi for system y+L compared with system y+/CATs 

mediated transport was higher at all pHi used in this study (Figure 3E).  

 

3.6 NOS activity 

 In the absence of NH4Cl, total synthesis of L-citrulline in cells incubated with 100 

µmol/L L-arginine was partially reduced by NEM and L-leucine but abolished by NEM + L-

leucine (Figure 4A). NH4Cl similarly inhibited L-citrulline synthesis in the absence or 

presence of L-leucine but blocked by NEM and NEM + L-leucine. Incubation of cells with L-

NAME blocked L-citrulline synthesis in all experimental conditions. The NOS-dependent 

fraction of synthesis of L-citrulline was reduced by NEM or L-leucine but abolished by NEM 

+ L-leucine (Figure 4C). In the presence of NH4Cl, NOS-dependent L-citrulline synthesis was 

decreased partially reaching similar values to those in the presence of L-leucine. However, it 

was abolished in the presence of NEM or NEM + L-leucine.  
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In the absence of NH4Cl, total synthesis of L-citrulline in cells incubated with 2 

µmol/L L-arginine was unaltered by NEM but abolished by L-leucine and NEM + L-leucine 

(Figure 4B). NH4Cl and L-NAME also abolished L-citrulline synthesis. The NOS-dependent 

synthesis of L-citrulline in the absence of NH4Cl was unaltered by NEM but blocked by L-

leucine and NEM + L-leucine (Figure 4D). NH4Cl reduced, but NEM, L-leucine, and NEM + 

L-leucine blocked the NOS-dependent synthesis of L-citrulline. 

  

3.7 eNOS expression and activation 

 Total eNOS protein abundance was unaltered by an acidic pHi (Figure 5A,B). 

Phosphorylation of eNOS at Ser1177 was reduced in a pHi-dependent manner (EC50 = 0.77 ± 

0.03 pHi) (Figure 5C); however, eNOS phosphorylation at Thr495 was unaltered by acidic pHi 

(Figure 5D).   

 

4. Discussion 

 This study shows that pHi is a factor that modulates the L-arginine transport in primary 

cultured HUVECs from normal pregnancies. Intracellular acidification causes a reduction in 

the L-arginine transport via system y+L but not via system y+/CATs, and in the activity of 

eNOS due to lower activator phosphorylation in Ser1177 at this enzyme. Since NO is involved 

in a broader range of biological effects other than regulation of vascular tone, intracellular 

acidification may have significant implications in diseases associated with endothelial 

dysfunction, such as gestational diabetes mellitus and cancer, where the pHo and pHi are 

altered [6,27–29].  
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 HUVECs show a pHi 7.19 as previously reported (pHi ~7.21) [6,30,31], and is close 

to the pH reported in the human umbilical vein blood (pH 7.35) [25,32-34]. Intracellular 

acidification downregulates the transport activity of the human equilibrative nucleoside 

transporters 1 and 2 in HUVECs [6], and Na+/H+ exchanger 1 in human lymphoblasts [34] and 

the human colonic carcinoma T84 cell line [35]. Since overall L-arginine transport was reduced 

as the pHi changed to acidic in HUVECs, L-arginine transport mechanisms are responsive to a 

change in the pHi in this cell type. Inhibition by the acidic pHi was partial and similar to that 

induced by L-leucine at basal or acidic pHi in the presence of 100 µmol/L L-arginine. 

Considering the apparent Km for L-arginine uptake via hCAT-1 (Km ~120 µmol/L) and hCAT-

2B (Km ~250 µmol/L) in this cell type [1,2,36] it is likely that these isoforms were involved in 

this phenomenon. L-Arginine transport via system y+/CATs is independent of pHo in 

mammalian cells [2,11,37]. However, there are no studies addressing modulation of L-

arginine transport by pHi in endothelium or other cell types [2,11,34,37]. Our results suggest 

that system y+/CATs activity (likely hCAT-1 and hCAT-2B) is independent of intracellular 

acidification up to ∆pHi ~0.69 from the basal pHi since the effect of the ∆pHi on 100 µmol/L 

L-arginine uptake (UEpHi 0.022 ± 0.012, range 0.01-0.06) or the Vmax/Km for transport 

(Vmax/KmEpHi 0.0037 ± 0.0011, range 0.002-0.005) of this amino acid was unaltered. 

 Uptake of L-arginine is also mediated by system y+L in HUVECs [9,10]. Uptake of 2 

µmol/L L-arginine was almost exclusively mediated via system y+L meanwhile at higher 

levels (100 µmol/L) transport was via system y+/CATs and system y+L. The results show that 

system y+L transport activity was sensitive to acidic pHi in HUVECs [34,38], an effect that 

was higher at smaller changes from the basal pHi. Thus, system y+L seems more efficiently 

modulated by a discrete change in pHi (∆pHi 0.06 in this study) from the physiological pHi in 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

19 

HUVECs. Similar changes were seen with 2 mol/L or a broader concentration of L-arginine 

(UEpHi / 
Vmax/KmEpHi ~0.8). Thus, pHi modulation of system y+L activity results from changing 

the Vmax/Km for system y+L, an effect that results from reduced Vmax. Several possibilities may 

explain this finding, i.e., (i) reduced number of transporters available at the plasma membrane 

due to lower expression or recycling with no change in their transport capacity, (ii) decreased 

transport capacity of a fixed number of membrane transporters, or (iii) both phenomena. Since 

pHi effect on transport was assayed for 15 s and system y+L half-life is most likely unaltered 

at this incubation time, the reduced L-arginine transport may result from a lower activity 

rather than expression of system y+L in HUVECs.  

 An increase in the activity of system y+L associated with a higher synthesis of NO in 

HUVECs [1,10], human platelets [16,17], and rat cortical astrocytes [39]. Also, since system 

y+L may be located close to eNOS in the plasma membrane [2], the pHi-decreased system y+L 

transport activity may result in lower eNOS activity in HUVECs. Our results show that L-

NAME–inhibited L-citrulline formation from L-arginine (index of NOS activity) [8] was 

lower at acidic pHi. This phenomenon was associated with a reduced activity of system y+L, 

but not system y+/CATs and abolished at 2 µmol/L but partially reduced at 100 µmol/L L-

arginine. Interestingly, eNOS activity seems linked to system y+/CATs (particularly hCAT-1 

and hCAT-2) in HUVECs [2,40–42]. However, an intracellular L-arginine pool not fed from 

this amino acid extracellular content is also a supplying source for eNOS in this cell type 

[40,42]. Thus, CATs transport activity could be unaltered, up or downregulated and these 

changes will not necessarily lead to parallel changes in NOS activity. Indeed, HUVECs from 

late-onset preeclampsia show increased hCAT-1–mediated L-arginine transport but reduced 

eNOS activity [43,44]. Potential explanations for this phenomenon include the possibility that 
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system y+/CATs activity may deliver L-arginine for NOS activity and NO generation, arginase 

activity for the synthesis of polyamines, or for protein synthesis [43,44]. 

The reduced NOS activity seen in HUVECs in an acidic pHi was likely due to lower 

eNOS activation since its lower activator phosphorylation at serine1177 [8,18,26] instead of an 

increased inhibitory phosphorylation of threonine497 [8,18,26]. Since intracellular alkalization 

activates eNOS in HUVECs [18], and other endothelium including human pulmonary aortic 

[19] and rat aortic [20] endothelial cells, intracellular acidification may result in reduced NO 

synthesis in HUVECs. Interestingly, a change in pHi from 7.5 to ~6.5 resulted in a more 

significant reduction of NOS activity compared with a pHi shift from 6.5 to 5.5 [18], thus 

complementing similar findings for system y+L activity in HUVECs. Thus, a change in pHi 

causing intracellular acidification is a phenomenon involved in downregulation of the system 

y+L/eNOS activity in HUVECs. The possibility that intracellular acidification inhibited NOS 

was not related to L-arginine uptake is unlikely since incubation of cells with NEM + L-

leucine abolished L-arginine uptake and NO synthesis. This proposal is supported by studies 

in rat astrocytes knockdown for system y+/LAT-2 expression where system y+L activity and 

NO generation was reduced [39]. 

 In summary, intracellular acidification results in reduced membrane transport of L-

arginine mediated via system y+L but not via system y+/CATs in HUVECs (see Figure 6). 

Diminished transport resulted from lower maximal transport capacity due to reduced Vmax 

without significant alterations in the apparent Km for transport. Therefore, an acidic pHi seems 

not to alter the intrinsic properties of system y+L but the activity of membrane transporters in 

HUVECs. Interestingly, the pHi sensitivity of L-arginine transport was higher as smaller the 

change in the pHi from the basal pHi in this cell type. Additionally, intracellular acidification 

also reduced the synthesis of NO and activator phosphorylation of eNOS, which seems to 
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result from reduced system y+L activity and lower activation of eNOS. Interestingly, 

preliminary results show that basal pHi is alkaline in HUVECs exposed to an A2A adenosine 

receptors antagonist (L Sobrevia, unpublished), suggesting that basal pHi is potentially 

maintained by activation of this type of adenosine receptors in HUVECs. We hypothesise that 

changing the pHi into an acidic intracellular environment is a phenomenon likely involved in 

the lower adenosine-mediated relaxation of foetoplacental vasculature via reducing the 

endothelial system y+L/eNOS activity as seen in diseases of pregnancy such as preeclampsia 

[44,45], obesity [46,47], or gestational diabetes mellitus [21,27,28].  
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Figure 1. Effect of cell pHi on L-arginine uptake in HUVECs. A. Cells were preloaded 

with BCECF-AM and transferred into a spectrofluorometer. After basal pHi 

stabilisation, the cells were exposed (2 min) to a control solution containing 20 mmol/L 

NH4Cl (+NH4Cl). Cells were then rinsed with a NH4Cl-free solution (–NH4Cl) and left 

in this medium for pHi recovery (see Materials and methods). A typical record is shown. 

The insert indicates the data for the first 55 s after removal of NH4Cl. The grey area 

indicates the time (10 s) used for overall uptake of 2 or 100 µmol/L L-arginine (6 

μCi/mL L-[3H]arginine, 37°C). B. pHi values for cells exposed to a Na+-free solution 

without (0) or with NH4Cl. C. Overall 100 µmol/L L-arginine uptake in +NH4Cl or –

NH4Cl solution in the absence (–) or presence (+) of N-ethylmaleimide (NEM) or L-

leucine. D. L-Arginine uptake mediated via system y+/CATs derived from data in C. E. 

Overall 2 µmol/L L-arginine uptake as in C. F. L-Arginine uptake mediated via system 

y+L derived from data in E. In B, *P<0.05 versus without or with 0.1 mmol/L NH4Cl. In 

C, *P<0.05 versus all other values, †P<0.05 versus corresponding values in the presence 

of NEM or NEM + L-leucine. ‡P<0.05 versus values in –NH4Cl in the presence of 

NEM. In D, *P<0.03 versus corresponding values in 2 µmol/L L-arginine. In E, 

*P<0.03 versus all other values except for –NH4Cl in the presence of NEM. In F, 

*P<0.03 versus corresponding values in +NH4Cl. Values are mean  S.E.M. (n = 18). 

 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

 

32 

Figure 2. Effect of pHi on L-arginine uptake in HUVECs. A. L-Arginine (100 mol/L) 

uptake (6 μCi/mL L-[3H]arginine, 10 s, 37ºC) in primary cultures of HUVECs non-

treated (0) or treated with increasing concentrations of NH4Cl as described in Materials 

and methods. Cells were in the absence (Control) or presence of 200 µmol/L N-

ethylmaleimide (NEM). B, L-Arginine (2 mol/L) uptake as in A in the presence of 200 

µmol/L NEM (i.e., Control for this concentration of L-arginine) or NEM plus 2 mmol/L 

L-leucine (NEM + L-leucine). C. L-Arginine uptake via system y+/CATs and system 

y+L derived from data in A and B, respectively, in the absence of presence of NH4Cl. D. 

L-Arginine uptake against pHi values in cells as in C. E. Efficiency of a change in the 

pHi (∆pHi) on the uptake of L-arginine (UEpHi) via system y+/CAT and system y+L from 

data in D. Values for UEpHi are expressed as a change in the pmol/µg protein/minute 

relative to 1 (see Materials and methods). F. Relative UEpHi for system y+/CAT and 

system y+L from data in E. In A, B, and C, *P<0.05 versus corresponding values 

without NH4Cl. In D, *P<0.05 versus corresponding values at pHi 7.13 and pHi 7.19. In 

E, *P<0.03 versus all other corresponding values, †P<0.05 versus corresponding value 

at ∆pHi = 0.69 pHi units. In F, *P<0.03 versus all other values, †P<0.05 versus values at 

pHi = 6.5. Values are mean  S.E.M. (n = 19). 
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Figure 3. Effect of NH4Cl on L-arginine saturable transport in HUVECs. A. Saturable L-

arginine transport (6 μCi/mL L-[3H]arginine, 10 s, 37ºC) was measured in primary 

cultures of HUVECs non-treated (Control, i.e., pHi 7.19) or treated with 0.1, 1, or 20 

mmol/L NH4Cl reaching pHi 7.13, 6.81, or 6.5, respectively (see Materials and 

methods). Cells at pHi 7.19 were in the absence or presence of 200 µmol/L N-

ethylmaleimide (NEM) or NEM plus 2 mmol/L L-leucine (NEM + L-leucine). Cells in 

pHi 7.13, 6.81, or 6.5 were exposed to NEM. B. Eadie-Hofstee plots for transport data in 

cells in the presence of NEM as in A. C. Maximal transport capacity (Vmax/Km) for 

systems y+/CATs and system y+L from data in A (see also Table 2). D. The efficiency of 

a change in the pHi (∆pHi) on maximal transport capacity for L-arginine (Vmax/KmEpHi) 

via system y+/CATs and system y+L from data in A. Values for Vmax/KmEpHi are expressed 

as a change in the pmol/µg protein/minute relative to 1 (see Materials and methods). E. 

Relative Vmax/KmEpHi for system y+/CAT and system y+L from data in D. In C, *P<0.05 

versus corresponding values at pHi 7.13 and 7.19. In D, *P<0.05 versus all other values. 

Values are mean  S.E.M. (n = 19). 
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Figure 4. pHi dependency of NOS activity in HUVECs. A. Intracellular L-citrulline level 

was determined by H.P.L.C. in primary cultures of HUVECs not treated (–NH4Cl) or 

treated (+NH4Cl) with 20 mmol/L NH4Cl in the absence or presence of 100 µmol/L NG-

nitro-L-arginine methyl ester (L-NAME) as described in Materials and Methods. Assays 

were in cells in 100 µmol/L L-arginine in the absence or presence of 200 µmol/L N-

ethylmaleimide (NEM) or NEM plus 2 mmol/L L-leucine (NEM + L-leucine). B. The 

intracellular L-citrulline level in HUVECs in 2 µmol/L L-arginine as in A. C. Nitric 

oxide synthase (NOS) activity-dependent L-citrulline synthesis derived from data in A. 

D. Nitric oxide synthase (NOS) activity-dependent L-citrulline synthesis derived from 

data in B. In A, *P<0.05 versus all other values, †P<0.05 versus corresponding values 

except in the presence of L-leucine. ‡P<0.05 versus all other corresponding values. All 

values in the presence of L-NAME are significantly different (P<0.03) from values in 

the absence of this inhibitor. In B, *P<0.03 versus all other values. In C, *P<0.05 versus 

all other values, †P<0.05 versus all other corresponding values except in the presence of 

L-leucine, ‡P<0.05 versus all other corresponding values except in the presence of NEM 

+ L-leucine, §P<0.03 versus corresponding values in the presence of L-leucine. In D, 

*P<0.05 versus all other values except for –NH4Cl in the presence of NEM, †P<0.05 

versus all other corresponding values, ‡P<0.05 versus corresponding values in –NH4Cl. 

Values are mean  S.E.M. (n = 19). 
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Figure 5. pHi dependency of eNOS expression and phosphorylation in HUVECs. A. 

Western blot for total (Total eNOS) or phosphorylated at Serine1177 (P-Ser1177eNOS) or 

Threonine495 (P-Thr495eNOS) eNOS protein in primary cultures of HUVECs non-treated 

(Control, i.e., pHi = 7.19) or treated with 0.1, 1, or 20 mmol/L NH4Cl reaching pHi 7.13, 

6.81, or 6.5, respectively (see Materials and methods). ß-Actin is the loading control. 

Total eNOS/ß-actin (B), P-Ser1177eNOS/Total eNOS (C) or P-Thr495eNOS/Total eNOS 

(C) protein ratios from cells as in A. *P<0.05 versus values at pHi 7.19 and 7.13. Values 

are mean  S.E.M. (n = 19). 
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Figure 6. Modulation of L-arginine/NO signalling pathway by intracellular pH in the 

human foetoplacental endothelium. The physiological intracellular pH (pHi) value in 

human umbilical vein endothelial cells (HUVECs) from normal pregnancies (pHi 7.2) 

maintain the L-arginine transport via the very high affinity transport system y+L with a 

maximal transport capacity (Vmax/Km) of ~0.2 pmol/µg protein/minute/(µmol/L). L-

Arginine is metabolised by the endothelial nitric oxide synthase (eNOS) into L-

citrulline and nitric oxide (NO). When pHi value is acidic (pHi 6.5), the Vmax/Km is 

reduced () to ~0.02 pmol/µg protein/minute/(µmol/L) resulting in lower uptake of L-

arginine (dotted lines). The reduced uptake in L-arginine transport and its subsequent 

lower bioavailability to eNOS leads to minor NO generation likely due to lower 

activator phosphorylation at serine 1177 (Ser1177) residue at eNOS. 
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Table 1. Clinical variables in pregnant women and newborns. 

   

Mother  

 Age (years) 31.4 ± 3.9 (26.2 – 37.5) 

 Height (cm) 161.7 ± 3.9 (154.1 – 163.2) 

 Weight (kg)  

  9-16 weeks of gestation 56.2 ± 3.4 (54.6 – 59.5) 

  Delivery 68.1 ± 3.9 (64.2 – 69.1) * 

 BMI (kg/m2)  

  9-16 weeks of gestation 21.5 ± 1.7 (20.1 – 22.3) 

  Delivery 26.1 ± 0.9 (25.1 – 29.3) * 

 Mean arterial pressure (mm Hg)  

  9-16 weeks of gestation 77.1 ± 3.5 (75.5 – 79.2) 

  Delivery 81.7 ± 6.1 (79.8 – 89.2) 

 Glycemia fasting (mg/dL) 83.1 ± 6.9 (74.9 – 89.5) 

 OGTT (mg/dL)  

  Glycemia basal 82.7 ± 3.2 (78.2 – 85.3) 

  Glycemia 2 hours after glucose 83.3 ± 4.1 (82.1 – 89.0) 

    

Newborn  

 Sex (female/male) 13/10 

 Gestational age (weeks) 38.3 ± 0.7 (38.0 – 38.9) 

 Birth weight (grams) 3182 ± 210 (3051 – 3346) 

 Height (cm) 49.7 ± 1.2 (48.1 – 52.2) 

 Ponderal index (grams/cm3 x 100) 2.59 ± 0.12 (2.12 – 2.63) 

   

 

Legend for Table 1 in the next page 
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Legend for Table 1 

 

Women that coursed with normal pregnancies (n = 23) were included in this study. Weight, 

body mass index (BMI), and blood pressure were determined at the first interview with the 

obstetrician (9-16 weeks of pregnancy) and at delivery. BMI was calculated by weight in 

kilograms divided by the square of the height in meters. Ponderal index was calculated by 

weight in grams divided by the cube of height in centimeters multiplied by 100. Oral glucose 

tolerance test (OGTT) was measured at the 1st trimester of pregnancy in all women with a 

normal glycaemia (see Materials and methods). *P<0.05 versus corresponding values at 9-16 

weeks of gestation. Values are mean ± S.D. plus range in brackets. 
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Table 2. Effect of intracellular pH on the kinetic parameters for L-arginine transport in HUVECs  

 

Saturable transport 
 

Overall transport 

Vmax 

(pmol/µg 

protein/ 

minute) 

 Km 

(µmol/L) 

 Vmax/Km 

(pmol/µg 

protein/ 

minute/(µmol/L)) 

 KD  

(pmol/µg 

protein/ 

minute/(µmol/L)) 

 vi  

(pmol/µg 

protein/ 

0.5 

seconds) 

 

           

System 

y+/CATs 

          

Without NH4Cl 

pHi 7.19 

 0.60 ± 

0.18  

 79 ± 49   0.008 ± 0.004  0.0025  0.0002  0.00279 ± 

0.00022 

 

With NH4Cl 

(mmol/L) 

     

 

     

 0.1  pHi 

7.13 

 0.61 ± 

0.11 

 97 ± 29  

0.006 ± 0.002 

 0.0022 ± 0.0002  0.00258 ± 

0.00022 

 

 1  pHi 

6.89 

 0.58 ± 

0.12 

 73 ± 31  

0.008 ± 0.003 

 0.0022 ± 0.0002  0.00279 ± 

0.00018 

 

 20  pHi 

6.50 

 0.53 ± 

0.08 

 84 ± 32  

0.006 ± 0.002 

 0.0023 ± 0.0003  0.00240 ± 

0.00021 

 

              

System y+L            

Without NH4Cl 

pHi 7.19 

 0.38 ± 

0.11  

 1.98 ± 

1.06  

 0.192 ± 0.079   0.0492  0.0048  0.00159 ± 

0.00019 

 

With NH4Cl 

(mmol/L) 

     

 

     

 0.1  pHi 

7.13 

 0.33 ± 

0.08  

 2.01 ± 

0.91 

 

0.164 ± 0.057 

 0.0511 ± 0.0041  0.00137 ± 

0.00019 

 

 1  pHi 

6.89 

 0.21 ± 

0.09 * 

 2.12 ± 

0.99 

 

0.099 ± 0.044 * 

 0.0488 ± 0.0052  0.00084 ± 

0.00011 * 

 

 20  pHi 

6.50 

 0.04 ± 

0.02 *† 

 1.99 ± 

0.12 

 

0.020 ± 0.003 *† 

 0.0479 ± 0.0048  0.00017 ± 

0.00008 *† 

 

 

Legend for Table 2 in the next page. 
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Legend for Table 2 

 

Transport of L-arginine (20 s, 37ºC) was measured in HUVECs from normal pregnancies. 

Transport assays were done in cells not treated (Without NH4Cl) or treated (With NH4Cl) in a 

NH4Cl-acid pulse as described in Materials and methods. The resulting intracellular pH (pHi) 

values are indicated. Maximal velocity (Vmax) and apparent Michaelis-Menten constant (Km) of 

saturable transport in the range of 0-20 µmol/L (for system y+L) or 0-1000 (for system 

y+/CATs) L-arginine were calculated assuming a single Michaelis-Menten hyperbola. Vmax/Km 

represents maximal L-arginine transport capacity. The lineal phase of overall transport of L-

arginine (KD) was obtained from transport data fitted to a Michaelis-Menten equation 

increased in a lineal component. Initial velocity (vi) was calculated for 0.5 s with 100 or 2 

μmol/L L-arginine transport. All values for Vmax, Km, and vi for system y+L are lower (P<0.05) 

and values for Vmax/Km and KD were higher (P<0.05) than corresponding values for system 

y+/CATs. *P<0.05 versus corresponding values in cells without or with 0.1 mmol/L NH4Cl. 

†P<0.05 versus corresponding values in cells without or with 0.1 mmol/L NH4Cl. Without 

insulin. †P<0.05 versus corresponding values in cells with 1 mmol/L NH4Cl. Values are mean 

± S.E.M. (n = 19). 
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Highlights 

 

 HUVECs show a basal intracellular alkaline pH (pHi ~7.2). 

 Intracellular acidification inhibits L-arginine transport via system y+L, but not the 

system y+/CATs activity. 

 Nitric oxide synthesis (NO) is reduced by intracellular acidification. 

 Reduced system y+L activity associated with lower endothelial NO synthase (eNOS) 

activation. 

 Intracellular pH regulates system y+L/eNOS signalling in HUVECs. 
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