71 research outputs found

    POWER OUTPUT, MUSCLE ACTIVITY, AND FRONTAL AREA OF A CYCLIST IN DIFFERENT CYCLING POSITIONS

    Get PDF
    Nine cyclists completed three trials of cycling 25W below lactate threshold (LT) with 1) hands on top of the brake hoods (BH); 2) hands below the dropped, curved, portion of the handlebars (DH); and 3) using clip-on triathlon aerobars (AB). Each trial lasted three minutes and was immediately followed by a 20sec maximal sprint during which power output and muscle EMG were measured. Frontal projection area (FPA) differed across all three positions. EMG did not differ between positions during submax or sprint cycling. Submax power output also did not differ, but during the sprint AB was lower than BH, while DH did not differ from the other conditions. Although power output was 8.1% less while cycling in the AB position than BH, its FPA was 17.4% less, indicating the AB position allows a savings in resistive power greater than that lost in power production

    Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC

    Get PDF
    Multiple myeloma (MM) remains an incurable malignancy despite the recent advancements in its treatment. The protective effects of the niche in which it develops has been well documented; however, little has been done to investigate the MM cell’s ability to ‘re-program’ cells within its environment to benefit disease progression. Here, we show that MM-derived macrophage migratory inhibitory factor (MIF) stimulates bone marrow stromal cells to produce the disease critical cytokines IL-6 and IL-8, prior to any cell-cell contact. Furthermore, we provide evidence that this IL-6/8 production is mediated by the transcription factor cMYC. Pharmacological inhibition of cMYC in vivo using JQ1 led to significantly decreased levels of serum IL-6—a highly positive prognostic marker in MM patients

    NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts

    Get PDF
    Improvements in the understanding of the metabolic cross-talk between cancer and its micro-environment are expected to lead to novel therapeutic approaches. Acute myeloid leukemia (AML) cells have increased mitochondria compared to non-malignant CD34+ hematopoietic progenitor cells. Furthermore, contrary to the Warburg hypothesis, (AML) relies on oxidative phosphorylation to generate ATP. Here we report that in human AML, NOX2 generates superoxide which stimulates bone marrow stromal cells (BMSC) to AML blast transfer of mitochondria through AML derived tunnelling nanotubes. Moreover, inhibition of NOX2 was able to prevent mitochondrial transfer, increase AML apoptosis and improve NSG AML mouse survival. Although mitochondrial transfer from BMSC to non-malignant CD34+ cells occurs in response to oxidative stress, NOX2 inhibition had no detectable effect on non-malignant CD34+ cell survival. Taken together we identify tumor-specific dependence on NOX2 driven mitochondrial transfer as a novel therapeutic strategy in AML

    Heparanase Levels Are Elevated in the Urine and Plasma of Type 2 Diabetes Patients and Associate with Blood Glucose Levels

    Get PDF
    Heparanase is an endoglycosidase that specifically cleaves heparan sulfate side chains of heparan sulfate proteoglycans. Utilizing an ELISA method capable of detection and quantification of heparanase, we examined heparanase levels in the plasma and urine of a cohort of 29 patients diagnosed with type 2 diabetes mellitus (T2DM), 14 T2DM patients who underwent kidney transplantation, and 47 healthy volunteers. We provide evidence that heparanase levels in the urine of T2DM patients are markedly elevated compared to healthy controls (1162±181 vs. 156±29.6 pg/ml for T2DM and healthy controls, respectively), increase that is statistically highly significant (P<0.0001). Notably, heparanase levels were appreciably decreased in the urine of T2DM patients who underwent kidney transplantation, albeit remained still higher than healthy individuals (P<0.0001). Increased heparanase levels were also found in the plasma of T2DM patients. Importantly, urine heparanase was associated with elevated blood glucose levels, implying that glucose mediates heparanase upregulation and secretion into the urine and blood. Utilizing an in vitro system, we show that insulin stimulates heparanase secretion by kidney 293 cells, and even higher secretion is observed when insulin is added to cells maintained under high glucose conditions. These results provide evidence for a significant involvement of heparanase in diabetic complications

    Promising bioactive properties of quercetin for potential food applications and health benefits: A review

    Get PDF
    Naturally occurring phytochemicals with promising biological properties are quercetin and its derivatives. Quercetin has been thoroughly studied for its antidiabetic, antibacterial, anti-inflammatory, anti-Alzheimer's, anti-arthritic, antioxidant, cardiovascular, and wound-healing properties. Anticancer activity of quercetin against cancer cell lines has also recently been revealed. The majority of the Western diet contains quercetin and its derivatives, therefore consuming them as part of a meal or as a food supplement may be sufficient for people to take advantage of their preventive effects. Bioavailability-based drug-delivery systems of quercetin have been heavily studied. Fruits, seeds, vegetables, bracken fern, coffee, tea, and other plants all contain quercetin, as do natural colors. One naturally occurring antioxidant is quercetin, whose anticancer effects have been discussed in detail. It has several properties that could make it an effective anti-cancer agent. Numerous researches have shown that quercetin plays a substantial part in the suppression of cancer cells in the breast, colon, prostate, ovary, endometrial, and lung tumors. The current study includes a concise explanation of quercetin's action mechanism and potential health applications

    Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment

    Get PDF
    Despite currently available therapies most patients diagnosed with acute myeloid leukemia (AML) die of their disease. Tumor-host interactions are critical for the survival and proliferation of cancer cells; accordingly, we hypothesise that specific targeting of the tumor microenvironment may constitute an alternative or additional strategy to conventional tumor-directed chemotherapy. Since adipocytes have been shown to promote breast and prostate cancer proliferation, and because the bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in adult humans, we examined the adipocyte-leukaemia cell interactions to determine if they are essential for the growth and survival of AML. Using in-vivo and in-vitro models of AML we show that bone marrow adipocytes from the tumor microenvironment support the survival and proliferation of malignant cells from patients with AML. We show that AML blasts alter metabolic processes in adipocytes to induce phosphorylation of hormone-sensitive lipase and consequently activate lipolysis, which then enables the transfer of fatty acids from adipocytes to AML blasts. In addition, we report that fatty acid binding protein-4 (FABP4) mRNA is up-regulated in adipocytes and AML when in co-culture. FABP4 inhibition using FABP4 shRNA knockdown or a small molecule inhibitor prevents AML proliferation on adipocytes. Moreover, knockdown of FABP4 increases survival in Hoxa9/Meis1-driven AML model. Finally, knockdown of carnitine palmitoyltransferase IA (CPT1A) in an AML patient-derived xenograft model improves survival. Here we report the first description of AML programming bone marrow adipocytes to generate a pro-tumoral microenvironment

    Acute myeloid leukemia induces pro-tumoral p16INK4a driven senescence in the bone marrow microenvironment

    Get PDF
    Acute myeloid leukemia (AML) is an age-related disease that is highly dependent on the bone marrow (BM) microenvironment. With increasing age, tissues accumulate senescent cells, characterized by an irreversible arrest of cell proliferation and the secretion of a set of proinflammatory cytokines, chemokines, and growth factors, collectively known as the senescence-associated secretory phenotype (SASP). Here, we report that AML blasts induce a senescent phenotype in the stromal cells within the BM microenvironment and that the BM stromal cell senescence is driven by p16INK4a expression. The p16INK4a-expressing senescent stromal cells then feed back to promote AML blast survival and proliferation via the SASP. Importantly, selective elimination of p16INK4a 1 senescent BM stromal cells in vivo improved the survival of mice with leukemia. Next, we find that the leukemia-driven senescent tumor microenvironment is caused by AML-induced NOX2-derived superoxide. Finally, using the p16-3MR mouse model, we show that by targeting NOX2 we reduced BM stromal cell senescence and consequently reduced AML proliferation. Together, these data identify leukemia-generated NOX2-derived superoxide as a driver of protumoral p16INK4a-dependent senescence in BM stromal cells. Our findings reveal the importance of a senescent microenvironment for the pathophysiology of leukemia. These data now open the door to investigate drugs that specifically target the “benign” senescent cells that surround and support AML

    HIF1α drives chemokine factor pro-tumoral signaling pathways in acute myeloid leukemia

    Get PDF
    Approximately 80% of patients diagnosed with acute myeloid leukemia (AML) die as a consequence of failure to eradicate the tumor from the bone marrow microenvironment. We have recently shown that stroma-derived interleukin-8 (IL-8) promotes AML growth and survival in the bone marrow in response to AML-derived macrophage migration inhibitory factor (MIF). In the present study we show that high constitutive expression of MIF in AML blasts in the bone marrow is hypoxia-driven and, through knockdown of MIF, HIF1α and HIF2α, establish that hypoxia supports AML tumor proliferation through HIF1α signaling. In vivo targeting of leukemic cell HIF1α inhibits AML proliferation in the tumor microenvironment through transcriptional regulation of MIF, but inhibition of HIF2α had no measurable effect on AML blast survival. Functionally, targeted inhibition of MIF in vivo improves survival in models of AML. Here we present a mechanism linking HIF1α to a pro-tumoral chemokine factor signaling pathway and in doing so, we establish a potential strategy to target AML

    Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

    Get PDF
    The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc
    corecore