1,319 research outputs found
On integrability and aggregation of superior demand functions
When each of the members of a collective displays a demand behavior that is consistent with a homogeneous of degree one in income demand, it is well known that some properties carry over to the aggregate representative consumer. We investigate those issues when the components of the society are allowed to behave in agreement with less restrictive demand patterns, namely superior demand functions.
Ion engine thrust vector study, phase 2 Quarterly report
Performance prediction for expected thrust misalignment in electron bombardment ion thruste
Process model based development of disassembly tools
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Disassembly processes require flexible tools for loosening and handling operations. Today, disassembly processes demand a great deal of manual labour and a vast variety of tools. Partly destructive tools which generate and use new acting surfaces are able to increase the economic viability owing to their flexibility and their promotion of the reuse of components. This article describes selected methods of acting surface generation and their application for prototypical tools.DFG, SFB 281, Demontagefabriken zur Rückgewinnung von Ressourcen in Produkt- und Materialkreisläufe
World caf\ue9 method to engage smart energy-district project partners in assessing urban co-benefits
Urban energy-district projects introduce outstanding technological innovation in buildings and energy systems increasing sustainability in city neighborhoods. Such projects generate additional co-benefits for the city beyond changes in physical elements and development of social and institutional relationships (e.g. local employment, environmental quality, public health, property values, innovation attitude, etc.). Since exceeding main declared goals or not always clearly foreseen in the early project phase, these co-benefits are often not properly understood and considered. However, only their explicit recognition will make possible their inclusion in the assessment of the whole project\u2019s performance. From these considerations, this study faces the issue of engaging project partners in assessing co-benefits in order to consider a broad spectrum of relevant, positive effects in the evaluation process. Group knowledge and group thinking of this complex topic are investigated through the world caf\ue9 method, providing an atmosphere of trust and open discussions among participants. This empirical work lays the foundations to go beyond the mere economic measure as the sole criterion for assessing project effects, also including changes in end-user behavior and intangible asset
Ideal Stars and General Relativity
We study a system of differential equations that governs the distribution of
matter in the theory of General Relativity. The new element in this paper is
the use of a dynamical action principle that includes all the degrees of
freedom, matter as well as metric. The matter lagrangian defines a relativistic
version of non-viscous, isentropic hydrodynamics. The matter fields are a
scalar density and a velocity potential; the conventional, four-vector velocity
field is replaced by the gradient of the potential and its scale is fixed by
one of the eulerian equations of motion, an innovation that significantly
affects the imposition of boundary conditions. If the density is integrable at
infinity, then the metric approaches the Schwarzschild metric at large
distances. There are stars without boundary and with finite total mass; the
metric shows rapid variation in the neighbourhood of the Schwarzschild radius
and there is a very small core where a singularity indicates that the gas laws
break down. For stars with boundary there emerges a new, critical relation
between the radius and the gravitational mass, a consequence of the stronger
boundary conditions. Tentative applications are suggested, to certain Red
Giants, and to neutron stars, but the investigation reported here was limited
to polytropic equations of state. Comparison with the results of Oppenheimer
and Volkoff on neutron cores shows a close agreement of numerical results.
However, in the model the boundary of the star is fixed uniquely by the
required matching of the interior metric to the external Schwarzschild metric,
which is not the case in the traditional approach.Comment: 26 pages, 7 figure
Perfect magnetohydrodynamics as a field theory
We propose the generally covariant action for the theory of a self-coupled
complex scalar field and electromagnetism which by virtue of constraints is
equivalent, in the regime of long wavelengths, to perfect magnetohydrodynamics
(MHD). We recover from it the Euler equation with Lorentz force, and the
thermodynamic relations for a prefect fluid. The equation of state of the
latter is related to the scalar field's self potential. We introduce 1+3
notation to elucidate the relation between MHD and field variables. In our
approach the requirement that the scalar field be single valued leads to the
quantization of a certain circulation in steps of ; this feature leads,
in the classical limit, to the conservation of that circulation. The
circulation is identical to that in Oron's generalization of Kelvin's
circulation theorem to perfect MHD; we here characterize the new conserved
helicity associated with it. We also demonstrate the existence for MHD of two
Bernoulli-like theorems for each spacetime symmetry of the flow and geometry;
one of these is pertinent to suitably defined potential flow. We exhibit the
conserved quantities explicitly in the case that two symmetries are
simultaneously present, and give examples. Also in this case we exhibit a new
conserved MHD circulation distinct from Oron's, and provide an example.Comment: RevTeX, 16 pages, no figures; clarifications added and typos
corrected; version to be published in Phys. Rev.
Recommended from our members
Cardiac Biomarkers and Risk of Atrial Fibrillation in Chronic Kidney Disease: The CRIC Study.
Background We tested associations of cardiac biomarkers of myocardial stretch, injury, inflammation, and fibrosis with the risk of incident atrial fibrillation (AF) in a prospective study of chronic kidney disease patients. Methods and Results The study sample was 3053 participants with chronic kidney disease in the multicenter CRIC (Chronic Renal Insufficiency Cohort) study who were not identified as having AF at baseline. Cardiac biomarkers, measured at baseline, were NT-proBNP (N-terminal pro-B-type natriuretic peptide), high-sensitivity troponin T, galectin-3, growth differentiation factor-15, and soluble ST-2. Incident AF ("AF event") was defined as a hospitalization for AF. During a median follow-up of 8 years, 279 (9%) participants developed a new AF event. In adjusted models, higher baseline log-transformed NT-proBNP (N-terminal pro-B-type natriuretic peptide) was associated with incident AF (adjusted hazard ratio [HR] per SD higher concentration: 2.11; 95% CI, 1.75, 2.55), as was log-high-sensitivity troponin T (HR 1.42; 95% CI, 1.20, 1.68). These associations showed a dose-response relationship in categorical analyses. Although log-soluble ST-2 was associated with AF risk in continuous models (HR per SD higher concentration 1.35; 95% CI, 1.16, 1.58), this association was not consistent in categorical analyses. Log-galectin-3 (HR 1.05; 95% CI, 0.91, 1.22) and log-growth differentiation factor-15 (HR 1.16; 95% CI, 0.96, 1.40) were not significantly associated with incident AF. Conclusions We found strong associations between higher NT-proBNP (N-terminal pro-B-type natriuretic peptide) and high-sensitivity troponin T concentrations, and the risk of incident AF in a large cohort of participants with chronic kidney disease. Increased atrial myocardial stretch and myocardial cell injury may be implicated in the high burden of AF in patients with chronic kidney disease
Continuous and discrete Clebsch variational principles
The Clebsch method provides a unifying approach for deriving variational
principles for continuous and discrete dynamical systems where elements of a
vector space are used to control dynamics on the cotangent bundle of a Lie
group \emph{via} a velocity map. This paper proves a reduction theorem which
states that the canonical variables on the Lie group can be eliminated, if and
only if the velocity map is a Lie algebra action, thereby producing the
Euler-Poincar\'e (EP) equation for the vector space variables. In this case,
the map from the canonical variables on the Lie group to the vector space is
the standard momentum map defined using the diamond operator. We apply the
Clebsch method in examples of the rotating rigid body and the incompressible
Euler equations. Along the way, we explain how singular solutions of the EP
equation for the diffeomorphism group (EPDiff) arise as momentum maps in the
Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch
variational principle is discretised to produce a variational integrator for
the dynamical system. We obtain a discrete map from which the variables on the
cotangent bundle of a Lie group may be eliminated to produce a discrete EP
equation for elements of the vector space. We give an integrator for the
rotating rigid body as an example. We also briefly discuss how to discretise
infinite-dimensional Clebsch systems, so as to produce conservative numerical
methods for fluid dynamics
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
- …
