The Clebsch method provides a unifying approach for deriving variational
principles for continuous and discrete dynamical systems where elements of a
vector space are used to control dynamics on the cotangent bundle of a Lie
group \emph{via} a velocity map. This paper proves a reduction theorem which
states that the canonical variables on the Lie group can be eliminated, if and
only if the velocity map is a Lie algebra action, thereby producing the
Euler-Poincar\'e (EP) equation for the vector space variables. In this case,
the map from the canonical variables on the Lie group to the vector space is
the standard momentum map defined using the diamond operator. We apply the
Clebsch method in examples of the rotating rigid body and the incompressible
Euler equations. Along the way, we explain how singular solutions of the EP
equation for the diffeomorphism group (EPDiff) arise as momentum maps in the
Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch
variational principle is discretised to produce a variational integrator for
the dynamical system. We obtain a discrete map from which the variables on the
cotangent bundle of a Lie group may be eliminated to produce a discrete EP
equation for elements of the vector space. We give an integrator for the
rotating rigid body as an example. We also briefly discuss how to discretise
infinite-dimensional Clebsch systems, so as to produce conservative numerical
methods for fluid dynamics