1,060 research outputs found

    2010 M&A Update

    Get PDF
    Most of 2009 was slow for mergers and acquisitions (M&A), due to financial turmoil and economic uncertainty that carried over from late 2008. But the deal market rebounded in the fourth quarter of 2009 and 2010 appears to be much better for M&A than 2009. Yet while the global economy shows signs of recovery, and many buyers and sellers are flush with cash, M&A activity may begin slowly in the United States in 2011 due to uncertainty about the business outlook and potential tax changes. In this article, we briefly review M&A activity in the first half of 2010, and look back on 2009. We comment on current deal making, suggest factors that may influence future deals, and conclude with expectations for the future

    New insights on the interaction between thiophene derivatives and Au surfaces: the case of 3,4-ethylenedioxythiophene and the relevant polymer.

    Get PDF
    The nature of the interface between electrogenerated poly(3,4-ethylenedioxythiophene) and the Au substrate is studied in detail. In particular, the adsorption of the relevant monomer, namely, 3,4-ethylenedioxythiophene, is investigated and compared with that of other thiophene derivatives. Different deposition procedures have been adopted: very thin films of the thiophene derivatives have been obtained through chemisorption processes from vapor and liquid phases, on Au polycrystalline substrates, Au nano particles possessing different size, and a Au(111) single crystal. Different techniques, operating both in situ and ex situ, have been employed for the characterization of these deposits, that is, X-ray photoemission and surface enhanced Raman spectroscopy. The results show that the poly(3,4-ethylenedioxythiophene)/metal interface is far from being simply constituted by unreacted molecules in contact with the substrate; rather, the formation of oligothiophene species and sulfur atoms at the interface has been ascertained

    In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode

    Get PDF
    Electrochemical AFM technique has been used for the in situ study of the electrogeneration-deposition process of polybithiophene at varying the polymerisation conditions, such as supporting electrolyte, i.e., LiClO4 or tetrabutylammonium hexafluorophosphate, and polymerisation procedure, i.e., either potentiostatic or potentiodynamic method. In order to better follow the evolution of the morphology of the deposit, particularly during the early stages of the polymer film growth, a suitable home-made electrochemical cell has been used

    Surface ruptures on cross-faults in the 24 November 1987 Superstition Hills, California, earthquake sequence

    Get PDF
    Left-lateral slip occurred on individual surface breaks along northeast-trending faults associated with the 24 November 1987 earthquake sequence in the Superstition Hills, Imperial Valley, California. This sequence included the M_s = 6.2 event on a left-lateral, northeast-trending “cross-fault” between the Superstition Hills fault (SHF) and Brawley seismic zone, which was spatially associated with the left-lateral surface breaks. Six distinct subparallel cross-faults broke at the surface, with rupture lengths ranging from about Formula to 10 km and maximum displacements ranging from 30 to 130 mm. About half a day after the M_s = 6.2 event, an M_s = 6.6 earthquake nucleated near the intersection of the cross-faults with the SHF, and rupture propagated southeast along the SHF. Whereas right-lateral slip on the SHF occurred dominantly on a single trace in a narrow zone, the cross-fault surface slip was distributed over several stands across a 10-km-wide zone. Also, whereas afterslip accounted for a large proportion of total slip on the SHF, there is no evidence for afterslip on the cross-faults. We present documentation of these surface ruptures. A simple mechanical model of faulting illustrates how the foreshock sequence may have triggered the main rupture. Displacement on other cross-faults could trigger an event on the southern San Andreas fault by a similar mechanism in the future

    Relational arenas in a regional Higher Education system: Insights from an empirical analysis

    Get PDF
    Extant indicators on research and higher education do not consider the complex relational structure in which universities are embedded and that influences their performance on one side, and the impact of policies on the other. This article investigates the overall pattern of universities' relational arenas in a Regional environment by considering their two main domains of activity, namely research and teaching. We study their structure, determinants, and existing interactions, in order to understand the possible consequences for policy making and management, and to identify synthetic indicators to represent the

    170 Nanometer Nuclear Magnetic Resonance Imaging using Magnetic Resonance Force Microscopy

    Get PDF
    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nanometer slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nanometers. This is achieved by force detection of the magnetic resonance, Magnetic Resonance Force Microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs creates spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5 K and 4 T. The experiment is sensitive to sample volumes containing 4×1011\sim 4 \times 10^{11} 71^{71}Ga/Hz/\sqrt{Hz}. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.Comment: Submitted to J of Magnetic Resonanc

    Seismicity and fault interaction, Southern San Jacinto Fault Zone and adjacent faults, southern California: Implications for seismic hazard

    Get PDF
    The southern San Jacinto fault zone is characterized by high seismicity and a complex fault pattern that offers an excellent setting for investigating interactions between distinct faults. This fault zone is roughly outlined by two subparallel master fault strands, the Coyote Creek and Clark-San Felipe Hills faults, that are located 2 to 10 km apart and are intersected by a series of secondary cross faults. Seismicity is intense on both master faults and secondary cross faults in the southern San Jacinto fault zone. The seismicity on the two master strands occurs primarily below 10 km; the upper 10 km of the master faults are now mostly quiescent and appear to rupture mainly or solely in large earthquakes. Our results also indicate that a considerable portion of recent background activity near the April 9, 1968, Borrego Mountain rupture zone (M_L=6.4) is located on secondary faults outside the fault zone. We name and describe the Palm Wash fault, a very active secondary structure located about 25 km northeast of Borrego Mountain that is oriented subparallel to the San Jacinto fault system, dips approximately 70° to the northeast, and accommodates right-lateral shear motion. The Vallecito Mountain cluster is another secondary feature delineated by the recent seismicity and is characterized by swarming activity prior to nearby large events on the master strand. The 1968 Borrego Mountain and the April 28, 1969, Coyote Mountain (M_L=5.8) events are examples of earthquakes with aftershocks and subevents on these secondary and master faults. Mechanisms from those earthquakes and recent seismic data for the period 1981 to 1986 are not simply restricted to strike-slip motion; dipslip motion is also indicated. Teleseismic body waves (long-period P and SH) of the 1968 and 1969 earthquakes were inverted simultaneously for source mechanism, seismic moment, rupture history, and centroid depth. The complicated waveforms of the 1968 event (M_o=1.2 × 10^(19) Nm) are interpreted in terms of two subevents; the first caused by right-lateral strike-slip motion in the mainshock along the Coyote Creek fault and the second by a rupture located about 25 km away from the master fault. Our waveform inversion of the 1969 event indicates that strike-slip motion predominated, releasing a seismic moment of 2.5 × 10^(17) Nm. Nevertheless, the right-lateral nodal plane of the focal mechanism is significantly misoriented (20°) with respect to the master fault, and hence the event is not likely to be associated with a rupture on that fault. From this and other examples in southern California, we conclude that cross faults may contribute significantly to seismic hazard and that interaction between faults has important implications for earthquake prediction
    corecore