488 research outputs found

    Resonant control of stochastic spatio-temporal dynamics in a tunnel diode by multiple time delayed feedback

    Full text link
    We study the control of noise-induced spatio-temporal current density patterns in a semiconductor nanostructure (double barrier resonant tunnelling diode) by multiple time-delayed feedback. We find much more pronounced resonant features of noise-induced oscillations compared to single time feedback, rendering the system more sensitive to variations in the delay time Ď„\tau. The coherence of noise-induced oscillations measured by the correlation time exhibits sharp resonances as a function of Ď„\tau, and can be strongly increased by optimal choices of Ď„\tau. Similarly, the peaks in the power spectral density are sharpened. We provide analytical insight into the control mechanism by relating the correlation times and mean frequencies of noise-induced breathing oscillations to the stability properties of the deterministic stationary current density filaments under the influence of the control loop. Moreover, we demonstrate that the use of multiple time delays enlarges the regime in which the deterministic dynamical properties of the system are not changed by delay-induced bifurcations

    Strain-controlled correlation effects in self-assembled quantum dot stacks

    Full text link
    We show that elastic interactions of an array of self-assembled quantum dots in a parent material matrix are markedly distinct from the elastic field created by a single point defect, and can explain the observed abrupt correlation--anticorrelation transition in semiconductor quantum dot stacks. Finite volume effects of the quantum dots are shown to lead to sharper transitions. Our analysis also predicts the inclination angle under which the alignment in successive quantum dot layers occurs in dependence on the material anisotropy

    Symmetry-breaking transitions in networks of nonlinear circuit elements

    Full text link
    We investigate a nonlinear circuit consisting of N tunnel diodes in series, which shows close similarities to a semiconductor superlattice or to a neural network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like system. The tunnel diodes are coupled globally through a load resistor. We find complex bifurcation scenarios with symmetry-breaking transitions that generate multiple fixed points off the synchronization manifold. We show that multiply degenerate zero-eigenvalue bifurcations occur, which lead to multistable current branches, and that these bifurcations are also degenerate with a Hopf bifurcation. These predicted scenarios of multiple branches and degenerate bifurcations are also found experimentally.Comment: 32 pages, 11 figures, 7 movies available as ancillary file

    Control of coherence resonance in semiconductor superlattices

    Full text link
    We study the effect of time-delayed feedback control and Gaussian white noise on the spatio-temporal charge dynamics in a semiconductor superlattice. The system is prepared in a regime where the deterministic dynamics is close to a global bifurcation, namely a saddle-node bifurcation on a limit cycle ({\it SNIPER}). In the absence of control, noise can induce electron charge front motion through the entire device, and coherence resonance is observed. We show that with appropriate selection of the time-delayed feedback parameters the effect of coherence resonance can either be enhanced or destroyed, and the coherence of stochastic domain motion at low noise intensity is dramatically increased. Additionally, the purely delay-induced dynamics in the system is investigated, and a homoclinic bifurcation of a limit cycle is found.Comment: 7 pages, 7 figure

    Delay-induced multistability near a global bifurcation

    Full text link
    We study the effect of a time-delayed feedback within a generic model for a saddle-node bifurcation on a limit cycle. Without delay the only attractor below this global bifurcation is a stable node. Delay renders the phase space infinite-dimensional and creates multistability of periodic orbits and the fixed point. Homoclinic bifurcations, period-doubling and saddle-node bifurcations of limit cycles are found in accordance with Shilnikov's theorems.Comment: Int. J. Bif. Chaos (2007), in prin

    Experimental Observations of Group Synchrony in a System of Chaotic Optoelectronic Oscillators

    Full text link
    We experimentally demonstrate group synchrony in a network of four nonlinear optoelectronic oscillators with time-delayed coupling. We divide the nodes into two groups of two each, by giving each group different parameters and by enabling only inter-group coupling. When coupled in this fashion, the two groups display different dynamics, with no isochronal synchrony between them, but the nodes in a single group are isochronally synchronized, even though there is no intra-group coupling. We compare experimental behavior with theoretical and numerical results

    Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles

    Get PDF
    A decade ago, tunnels inside mineral grains were found that were likely formed by hyphae of ectomycorrhizal (EcM) fungi. This observation implied that EcM fungi can dissolve mineral grains. The observation raised several questions on the ecology of these Âżrock-eatingÂż fungi. This review addresses the roles of these rock-eating EcM associations in plant nutrition, biogeochemical cycles and pedogenesis. Research approaches ranged from molecular to ecosystem level scales. Nutrient deficiencies change EcM seedling exudation patterns of organic anions and thus their potential to mobilise base cations from minerals. This response was fungal species-specific. Some EcM fungi accelerated mineral weathering. While mineral weathering could also increase the concentrations of phytotoxic aluminium in the soil solution, some EcM fungi increase Al tolerance through an enhanced exudation of oxalate. Through their contribution to Al transport, EcM hyphae could be agents in pedogenesis, especially podzolisation. A modelling study indicated that mineral tunnelling is less important than surface weathering by EcM fungi. With both processes taken together, the contribution of EcM fungi to weathering may be significant. In the field vertical niche differentiation of EcM fungi was shown for EcM root tips and extraradical mycelium. In the field EcM fungi and tunnel densities were correlated. Our results support a role of rock-eating EcM fungi in plant nutrition and biogeochemical cycles. EcM fungal species-specific differences indicate the need for further research with regard to this variation in functional traits

    Control of unstable steady states by time-delayed feedback methods

    Full text link
    We show that time-delayed feedback methods, which have successfully been used to control unstable periodic ortbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the feedback scheme using the Lambert function and discuss effects of both a low-pass filter included in the control loop and non-zero latency times associated with the generation and injection of the feedback signal.Comment: 8 pages, 11 figure

    Adsorption geometry and electronic structure of iron phthalocyanine on Ag surfaces: A LEED and photoelectron momentum mapping study

    Full text link
    We present a comprehensive study of the adsorption behavior of iron phthalocyanine on the low-index crystal faces of silver. By combining measurements of the reciprocal space by means of photoelectron momentum mapping and low energy electron diffraction, the real space adsorption geometries are reconstructed. At monolayer coverage ordered superstructures exist on all studied surfaces containing one molecule in the unit cell in case of Ag(100) and Ag(111), and two molecules per unit cell for Ag(110). The azimuthal tilt angle of the molecules against the high symmetry directions of the substrate is derived from the photoelectron momentum maps. A comparative analysis of the momentum patterns on the substrates with different symmetry indicates that both constituents of the twofold degenerate FePc lowest unoccupied molecular orbital are occupied by charge transfer from the substrate at the interface
    • …
    corecore