We study the effect of a time-delayed feedback within a generic model for a
saddle-node bifurcation on a limit cycle. Without delay the only attractor
below this global bifurcation is a stable node. Delay renders the phase space
infinite-dimensional and creates multistability of periodic orbits and the
fixed point. Homoclinic bifurcations, period-doubling and saddle-node
bifurcations of limit cycles are found in accordance with Shilnikov's theorems.Comment: Int. J. Bif. Chaos (2007), in prin