783 research outputs found

    Duality and o-O structure in non reflexive banach spaces

    Get PDF
    Let E be a Banach space with a supremum type norm induced by a collection of functionals L ⊂ X∗where X is a reflexive Banach space. Familiar spaces of this type are BMO, BV, C0,α(0 < α < 1), Lq,∞, for q > 1. For most of these spaces E, the predual E∗ exists and can be defined by atomic decomposition of its elements. Another typical result, when it is possible to define a rich vanishing subspace E0⊂ E is the "two star theorem ", namely (E0)∗ = E∗. This fails for E = BV and E =C0,1= Lip

    The Galactic evolution of phosphorus

    Full text link
    As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P I lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra.We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. The spectra are analysed with one-dimensional model-atmospheres computed in Local Thermodynamic Equilibrium (LTE). The line formation computations are performed assuming LTE. The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S]=0.10+- 0.10. We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and alpha captures on $27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet.Comment: To be published on A&

    Chemical composition of a sample of bright solar-metallicity stars

    Full text link
    We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from CaII are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested.Comment: To be published on A

    New ATLAS9 And MARCS Model Atmosphere Grids for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Full text link
    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H2O linelist, a wide range of carbon ([C/M]) and alpha element [alpha/M] variations, and solar reference abundances from Asplund et al. 2005. The added range of varying carbon and alpha element abundances also extends the previously calculated MARCS model grids. Altogether 1980 chemical compositions were used for the ATLAS9 grid, and 175 for the MARCS grid. Over 808 thousand ATLAS9 models were computed spanning temperatures from 3500K to 30000K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500K to 5500K, and log g from 0 to 5. All model atmospheres are publically available online.Comment: 8 pages, 6 figures, 5 tables, accepted for publication in The Astronomical Journa

    A Double Main Sequence in the Globular Cluster NGC 6397

    Full text link
    High-precision multi-band HST photometry reveals that the main sequence (MS) of the globular cluster NGC 6397 splits into two components, containing ~30% and ~70% of the stars. This double sequence is consistent with the idea that the cluster hosts two stellar populations: (i) a primordial population that has a composition similar to field stars, and containing ~30% of the stars, and (ii) a second generation with enhanced sodium and nitrogen, depleted carbon and oxygen, and a slightly enhanced helium abundance (Delta Y~0.01). We examine the color difference between the two sequences across a variety of color baselines and find that the second sequence is anomalously faint in m_F336W. Theoretical isochrones indicate that this could be due to NH depletion.Comment: 19 pages, 11 figures, accepted for pubblication in Ap

    UVES observations of the Canis Major overdensity

    Full text link
    We present the first detailed chemical abundances for three giant stars which are candidate members of the Canis Major overdensity, obtained by using FLAMES-UVES at VLT. The stars, in the background of the open cluster NGC 2477, have radial velocities compatible with a membership to this structure. However, due to Galactic disc contamination, radial velocity by itself is unable to firmly establish membership. The metallicities span the range -0.5 < [Fe/H] < +0.1. Assuming that at least one of the three stars is indeed a member of CMa implies that this structure has undergone a high level of chemical processing, comparable to that of the Galactic disc. The most metal-rich star of the sample, EIS 6631, displays several abundance ratios which are remarkably different from those of Galactic stars: [alpha/Fe] ~-0.2, [Cu/Fe] ~+0.25, [La/Fe]~+0.6, [Ce/Fe]~+0.8 and [Nd/Fe]~+0.6. These ratios make it likely that this star was formed in an external galaxy.Comment: 4 pages, 4 figures, accepted for publication in A&A letter
    • 

    corecore