3,191 research outputs found

    Solitary and travelling waves in a rod

    Get PDF

    Existence of solutions for a finite nonlinearly hyperlastic rod

    Get PDF

    The XMM-Newton slew survey in the 2-10 keV band

    Full text link
    The XMM-Newton Slew Survey (XSS) covers a significant fraction of the sky in a broad X-ray bandpass. Although shallow by contemporary standards, in the `classical' 2-10 keV band of X-ray astronomy, the XSS provides significantly better sensitivity than any currently available all-sky survey. We investigate the source content of the XSS, focussing on detections in the 2-10 keV band down to a very low threshold (> 4 counts net of background). At the faint end, the survey reaches a flux sensitivity of roughly 3e-12 erg/cm2/s (2-10 keV). Our starting point was a sample of 487 sources detected in the XMMSL1d2 XSS at high galactic latitude in the hard band. Through cross-correlation with published source catalogues from surveys spanning the electromagnetic spectrum from radio to gamma-rays, we find that 45% of the sources have likely identifications with normal/active galaxies, 18% are associated with other classes of X-ray object (nearby coronally active stars, accreting binaries, clusters of galaxies), leaving 37% of the XSS sources with no current identification. We go on to define an XSS extragalactic hard band sample comprised of 219 galaxies and active galaxies. We investigate the properties of this extragalactic sample including its X-ray logN-logS distribution. We find that in the low-count limit, the XSS is strongly affected by Eddington bias. There is also a very strong bias in the XSS against the detection of extended sources, most notably clusters of galaxies. A significant fraction of the detections at and around the low-count limit may be spurious. Nevertheless, it is possible to use the XSS to extract a reasonably robust sample of extragalactic sources, excluding galaxy clusters. The differential logN-logS relation of these extragalactic sources matches very well to the HEAO-1 A2 all-sky survey measurements at bright fluxes and to the 2XMM source counts at the faint end.Comment: 16 pages, 13 figures, FITS table of XSS extragalactic sample available from http://www.star.le.ac.uk/~amr30/Slew

    Seyfert galaxies with Swift: giant flares, rapid drops, and other surprises

    Full text link
    Swift has initiated a new era of understanding the extremes of active galactic nuclei (AGN) variability, their drivers and underlying physics. This is based on its rapid response, high sensitivity, good spatial resolution, and its ability to collect simultaneously X--ray-to-optical SEDs. Here, we present results from our recent monitoring campaigns with Swift of highly variable AGN, including outbursts, deep low states, and unusual long-term trends in several Seyfert galaxies including Mrk 335, WPVS007, and RXJ2314.9+2243. We also report detection of a new X-ray and optical outburst of IC 3599 and our Swift follow-ups. IC 3599 was previously known as one of the AGN with the highest-amplitude outbursts. We briefly discuss implications of this second outburst of IC 3599 for emission scenarios including accretion-disk variability, repeat tidal disruption events, and the presence of a binary supermassive black hole.Comment: to appear in "Swift: 10 years of discovery", Proceedings of Scienc

    Anomalous escape governed by thermal 1/f noise

    Full text link
    We present an analytic study for subdiffusive escape of overdamped particles out of a cusp-shaped parabolic potential well which are driven by thermal, fractional Gaussian noise with a 1/ω1α1/\omega^{1-\alpha} power spectrum. This long-standing challenge becomes mathematically tractable by use of a generalized Langevin dynamics via its corresponding non-Markovian, time-convolutionless master equation: We find that the escape is governed asymptotically by a power law whose exponent depends exponentially on the ratio of barrier height and temperature. This result is in distinct contrast to a description with a corresponding subdiffusive fractional Fokker-Planck approach; thus providing experimentalists an amenable testbed to differentiate between the two escape scenarios

    The XMM-Newton Slew Survey

    Full text link
    XMM-Newton, with the huge collecting area of its mirrors and the high quantum efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever flown. This is strikingly evident during slew exposures, which, while yielding only at most 14 seconds of on-source exposure time, actually constitute a 2-10 keV survey ten times deeper than all other "all-sky" surveys. The current (April 2005) XMM archive contains 374 slew exposures which give a uniform coverage over around 10,000 square degrees (approx. 25% of the sky). Here we describe the results of pilot studies, the current status of the XMM-Newton Slew Survey, up-to-date results and our progress towards constructing a catalogue of slew detections in the full 0.2-12 keV energy band.Comment: 3 pages, 4 figures, XMM-Newton EPIC Consortium Meeting, Schloss Ringberg, Germany, April 2005, to appear in MPE Repor

    The XMM-Newton Slew Survey: Towards The Whole X-ray Sky and the Rarest X-ray Events

    Full text link
    The data collected by XMM-Newton as it slews between pointings currently cover almost half the entire sky, and many familiar features and new sources are visible. The soft-band sensitivity limit of the Slew is close to that of the RASS, and a large-area Slew-RASS comparison now provides the best opportunity for discovering extremely rare high-variability objects.Comment: To appear in Proceedings of "X-ray Astronomy 2009: Present Status, Multi-Wavelength Approach and Future Perspectives", Bologna, Italy, September 7-11, 2009, AIP, eds. A. Comastri, M. Cappi, and L. Angelin

    Extended sources in the XMM-Newton slew survey

    Full text link
    The low background, good spatial resolution and great sensitivity of the EPIC-pn camera on XMM-Newton give useful limits for the detection of extended sources even during the short exposures made during slewing maneouvers. In this paper we attempt to illustrate the potential of the XMM-Newton slew survey as a tool for analysing flux-limited samples of clusters of galaxies and other sources of spatially extended X-ray emission.Comment: 2 pages, 4 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    The XMM-Newton Slew Survey: towards the XMMSL1 catalogue

    Full text link
    The XMM-Newton satellite is the most sensitive X-ray observatory flown to date due to the great collecting area of its mirrors coupled with the high quantum efficiency of the EPIC detectors. It performs slewing manoeuvers between observation targets tracking almost circular orbits through the ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras open and the other instruments closed, operating with the observing mode set to the one of the previous pointed observation and the medium filter in place. Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide data, resulting in a maximum of 15 seconds of on-source time. These data can be used to give a uniform survey of the X-ray sky, at great sensitivity in the hard band compared with other X-ray all-sky surveys.Comment: 2 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200
    corecore