527 research outputs found
The Stellar Halo in the Large Magellanic Cloud: Mass, Luminosity, and Microlensing Predictions
Recently obtained kinematic data has shown that the Large Magellanic Cloud
(LMC) possesses an old stellar halo. In order to further characterize the
properties of this halo, parametric King models are fit to the surface density
of RR Lyrae stars. Using data from both the MACHO and OGLE II microlensing
surveys, the model fits yield the center of their distribution at RA =
05:21.1+-0.8, Dec = -69:45+-6 (J2000) and a core radius of 1.42+-0.12 kpc. As a
check the halo model is compared with RR Lyrae star counts in fields near the
LMC's periphery previously surveyed with photographic plates. These data,
however, require a cautious interpretation. Several topics regarding the LMC
stellar halo are discussed. First, the properties of the halo imply a global
mass-to-light ratio of M/L_V = 5.3+-2.1 and a total mass of 1.6+-0.6 10^10
M_sun for the LMC in good agreement with estimates based on the rotation curve.
Second, although the LMC's disk and halo are kinematically distinct, the shape
of the surface density profile of the halo is remarkably similar to that of the
young disk. For example, the best-fit exponential scale length for the RR Lyrae
stars is 1.47+-0.08 kpc, which compares to 1.46 kpc for the LMC's blue light.
In the Galaxy, the halo and disk do not resemble each other like this. Finally,
a local maximum in the LMC's microlensing optical depth due to halo-on-disk
stellar self-lensing is predicted. For the parameters of the stellar halo
obtained, this maximum is located near MACHO events LMC-4 and LMC-23, and is
large enough to possibly account for these two events, but not for all of the
observed microlensing.Comment: 11 pages, 1 figure, accepted to ApJ Letter
Positrons from dark matter annihilation in the galactic halo: theoretical uncertainties
Indirect detection signals from dark matter annihilation are studied in the
positron channel. We discuss in detail the positron propagation inside the
galactic medium: we present novel solutions of the diffusion and propagation
equations and we focus on the determination of the astrophysical uncertainties
which affect the positron dark matter signal. We find dark matter scenarios and
propagation models that nicely fit existing data on the positron fraction.
Finally, we present predictions both on the positron fraction and on the flux
for already running or planned space experiments, concluding that they have the
potential to discriminate a possible signal from the background and, in some
cases, to distinguish among different astrophysical propagation models.Comment: 22 pages, 15 figures. A few comments and references adde
Positrons from dark matter annihilation in the galactic halo: uncertainties
Indirect detection signals from dark matter annihilation are studied in the
positron channel. We discuss in detail the positron propagation inside the
galactic medium: we present novel solutions of the diffusion and propagation
equations and we focus on the determination of the astrophysical uncertainties
which affect the positron dark matter signal. We show that, especially in the
low energy tail of the positron spectra at Earth, the uncertainty is sizeable
and we quantify the effect. Comparison of our predictions with current
available and foreseen experimental data are derived.Comment: 4 pages, 4 figures, Proc. of the 30th International Cosmic Ray
Conference, July 3 - 11, 2007, Merida, Yucatan, Mexico (ICRC07
Antiproton and Positron Signal Enhancement in Dark Matter Mini-Spikes Scenarios
The annihilation of dark matter (DM) in the Galaxy could produce specific
imprints on the spectra of antimatter species in Galactic cosmic rays, which
could be detected by upcoming experiments such as PAMELA and AMS02. Recent
studies show that the presence of substructures can enhance the annihilation
signal by a "boost factor" that not only depends on energy, but that is
intrinsically a statistical property of the distribution of DM substructures
inside the Milky Way. We investigate a scenario in which substructures consist
of "mini-spikes" around intermediate-mass black holes. Focusing on
primary positrons and antiprotons, we find large boost factors, up to a few
thousand, that exhibit a large variance at high energy in the case of positrons
and at low energy in the case of antiprotons. As a consequence, an estimate of
the DM particle mass based on the observed cut-off in the positron spectrum
could lead to a substantial underestimate of its actual value.Comment: 13 pages, 9 figures, minor changes, version accepted for publication
in PR
Antiprotons from spallation of cosmic rays on interstellar matter
Cosmic ray antiprotons provide an important probe for the study of the galactic Dark Matter, as they could be produced by exotic sources. On the other hand, antiprotons are anyway produced by standard nuclear reactions of cosmic ray nuclei on interstellar matter. This process is responsible for a background flux that must be carefully determined to estimate the detectability of an hypothetical exotic signal. Estimates of this background suffer from potential uncertainties of various origins. The propagation of cosmic antiprotons depends on several physical characteristics of the Galaxy which are poorly known. Antiprotons are created from cosmic protons and helium nuclei whose fluxes were not measured with great accuracy until very recently. Calculations of antiproton fluxes make use of nuclear physics models with their own shortcomings and uncertainties. The goal of this paper is to give a new evaluation of the cosmic antiproton flux along with the associated uncertainties. The propagation parameters were tightly constrained in Maurin et al. 2001 by an analysis of cosmic ray nuclei data in the framework of a two-zone diffusion model and we apply these parameters to the propagation of antiprotons. We use the recently published data on proton and helion fluxes, and we find that this particular source of uncertainty has become negligible. The Monte Carlo program DTUNUC was used to carefully examine nuclear reactions. We find that all the cosmic antiproton fluxes naturally coming out of the calculation are fully compatible with experimental data. Uncertainties in this flux have been strongly reduced. Those related to propagation are less than 25%. All other possible sources of uncertainty have also been studied
- …