876 research outputs found
Distributed and Parallel Algorithms for Set Cover Problems with Small Neighborhood Covers
In this paper, we study a class of set cover problems that satisfy a special
property which we call the {\em small neighborhood cover} property. This class
encompasses several well-studied problems including vertex cover, interval
cover, bag interval cover and tree cover. We design unified distributed and
parallel algorithms that can handle any set cover problem falling under the
above framework and yield constant factor approximations. These algorithms run
in polylogarithmic communication rounds in the distributed setting and are in
NC, in the parallel setting.Comment: Full version of FSTTCS'13 pape
A Near-linear Time Constant Factor Algorithm for Unsplittable Flow Problem on Line with Bag Constraints
Consider a scenario where we need to schedule a set of jobs on a system offering some resource (such as electrical power or communication bandwidth), which we shall refer to as bandwidth. Each job consists of a set (or bag) of job instances. For each job instance, the input specifies the start time, finish time, bandwidth requirement and profit. The bandwidth offered by the system varies at different points of time and is specified as part of the input. A feasible solution is to choose a subset of instances such that at
any point of time, the sum of bandwidth requirements of the chosen instances does not exceed the bandwidth available at that point of time, and furthermore, at most one instance is picked from each job.
The goal is to find a maximum profit feasible solution. We study this problem under a natural assumption called the no-bottleneck assumption (NBA), wherein the bandwidth requirement of any job instance is at most the minimum bandwidth available. We present a simple, near-linear time constant factor approximation algorithm for this problem, under NBA. When each job consists of only one job instance, the above problem is the same as the well-studied unsplittable flow problem (UFP) on lines. A constant factor approximation algorithm is known for the UFP on line, under NBA.
Our result leads to an alternative constant factor approximation algorithm for this problem. Though the approximation ratio achieved by our algorithm is inferior, it is much simpler, deterministic and faster in comparison to the existing algorithms. Our algorithm runs in near-linear time (), whereas the running time of the known algorithms is a high order polynomial. The core idea behind our algorithm is a reduction from the varying bandwidth case to the easier uniform bandwidth case, using a technique that we call slicing
WARP, a Modular Testbed for Configurable Wireless Network Research at Rice
Wireless Open-Access Research Platform (WARP), developed at CMC lab, Rice University, provides a scalable and configurable platform for wireless network research. Its programmability and flexibility makes it easy to prototype and implement various physical and network layer protocols and standards. In order to share algorithms and implementations developed at different research centers, an online open-access repository is used so that wireless network researchers can
collaborate to initiate multi-disciplinary system designs.Nokia CorporationXilinx Inc.National Science Foundatio
N-Methylmesoporphyrin IX Fluorescence As A Reporter Of Strand Orientation In Guanine Quadruplexes
Guanine quadruplexes (GQ) are four-stranded DNA structures formed by guanine-rich DNA sequences. The formation of GQs inhibits cancer cell growth, although the detection of GQs invivo has proven difficult, in part because of their structural diversity. The development of GQ-selective fluorescent reporters would enhance our ability to quantify the number and location of GQs, ultimately advancing biological studies of quadruplex relevance and function. N-methylmesoporphyrin IX (NMM) interacts selectively with parallel-stranded GQs; in addition, its fluorescence is sensitive to the presence of DNA, making this ligand a possible candidate for a quadruplex probe. In the present study, we investigated the effect of DNA secondary structure on NMM fluorescence. We found that NMM fluorescence increases by about 60-fold in the presence of parallel-stranded GQs and by about 40-fold in the presence of hybrid GQs. Antiparallel GQs lead to lower than 10-fold increases in NMM fluorescence. Single-stranded DNA, duplex, or i-motif, induce no change in NMM fluorescence. We conclude that NMM shows promise as a turn-on\u27 fluorescent probe for detecting quadruplex structures, as well as for differentiating them on the basis of strand orientation
WARP, a UnifiedWireless Network Testbed for Education and Research
In this paper, we introduce the Wireless Open-Access Research Platform (WARP) developed at CMC lab, Rice University. WARP provides a scalable and configurable platform mainly designed to prototype wireless communication algorithms for educational and research oriented applications. Its programmability and flexibility makes it easy to implement various physical and network layer protocols and standards. Moreover, the online open-access WARP repository is used to document and share different wireless architectures and cross-layer designs developed at educational and research centers. This repository is a fast and easy solution for students and researchers with a wide range of backgrounds in hardware implementation and algorithm development to collaborate and initiate multi-disciplinary system designs.Nokia CorporationXilinx Inc.National Science Foundatio
Performance Evaluation of Hybrid Coding of Images Using Wavelet Transform and Predictive Coding
Image compression techniques are necessary for the storage of huge amounts of digital images using reasonable amounts of space, and for their transmission with limited bandwidth. Several techniques such as predictive coding, transform coding, subband coding, wavelet coding, and vector quantization have been used in image coding. While each technique has some advantages, most practical systems use hybrid techniques which incorporate more than one scheme. They combine the advantages of the individual schemes and enhance the coding effectiveness. This paper proposes and evaluates a hybrid coding scheme for images using wavelet transforms and predictive coding. The performance evaluation is done using a variety of different parameters such as kinds of wavelets, decomposition levels, types of quantizers, predictor coefficients, and quantization levels. The results of evaluation are presented
Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective
Vendor lock-in is a major barrier to the adoption of cloud computing, due to the lack of standardization. Current solutions and efforts tackling the vendor lock-in problem are predominantly technology-oriented. Limited studies exist to analyse and highlight the complexity of vendor lock-in problem in the cloud environment. Consequently, most customers are unaware of proprietary standards which inhibit interoperability and portability of applications when taking services from vendors. This paper provides a critical analysis of the vendor lock-in problem, from a business perspective. A survey based on qualitative and quantitative approaches conducted in this study has identified the main risk factors that give rise to lock-in situations. The analysis of our survey of 114 participants shows that, as computing resources migrate from on-premise to the cloud, the vendor lock-in problem is exacerbated. Furthermore, the findings exemplify the importance of interoperability, portability and standards in cloud computing. A number of strategies are proposed on how to avoid and mitigate lock-in risks when migrating to cloud computing. The strategies relate to contracts, selection of vendors that support standardised formats and protocols regarding standard data structures and APIs, developing awareness of commonalities and dependencies
among cloud-based solutions. We strongly believe that the implementation of these strategies has a great potential
to reduce the risks of vendor lock-in
Development and characterization of a microfluidic model of the tumour microenvironment
The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening
Architectures for Cognitive Radio Testbeds and Demonstrators – An Overview
Wireless communication standards are developed at an ever-increasing rate of pace, and significant amounts of effort is put into research for new communication methods and concepts. On the physical layer, such topics include MIMO, cooperative communication, and error control coding, whereas
research on the medium access layer includes link control, network topology, and cognitive radio. At the same time, implementations are moving from traditional fixed hardware architectures towards software, allowing more efficient development. Today, field-programmable gate arrays (FPGAs) and regular
desktop computers are fast enough to handle complete baseband processing chains, and there are several platforms, both open-source and commercial, providing such solutions. The aims of this paper is to give an overview of five of the available platforms and their characteristics, and compare the features and performance measures of the different systems
- …
