
Distributed and Parallel Algorithms for Set Cover
Problems with Small Neighborhood Covers ∗

Archita Agarwal1, Venkatesan T. Chakaravarthy1,
Anamitra R. Choudhury2, Sambuddha Roy1, and
Yogish Sabharwal1

1 IBM Research Lab, New Delhi, India
{archiaga,vechakra,sambuddha,ysabharwal}@in.ibm.com

2 IIT Delhi, New Delhi, India
anamitra@cse.iitd.ac.in

Abstract
In this paper, we study a class of set cover problems that satisfy a special property which we
call the small neighborhood cover property. This class encompasses several well-studied problems
including vertex cover, interval cover, bag interval cover and tree cover. We design unified
distributed and parallel algorithms that can handle any set cover problem falling under the above
framework and yield constant factor approximations. These algorithms run in polylogarithmic
communication rounds in the distributed setting and are in NC, in the parallel setting.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, set cover problem, tree cover

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.249

1 Introduction

In the classical set cover problem, we are given a set system 〈E,S〉, where E is a universe
consisting of m elements and S is a collection of n subsets of E. Each set S ∈ S has cost
w(S) associated with it. The goal is to select a collection of sets R ⊆ S having the minimum
aggregate cost such that every element is included in at least one of the sets found in R.

There are two well-known classes of approximation algorithms for the set cover problem
[17]. The first class of algorithms have an approximation ratio of O(log ∆), where ∆ is the
maximum cardinality of the sets in S. The second class of algorithms have an approximation
ratio of f , where f is the frequency parameter which is the maximum number of sets of S
that any element belongs to. The above approximation ratios are nearly optimal [6, 16, 7].
In general the parameters ∆ and f can be arbitrary and so the above algorithms do not yield
constant factor approximations. The goal of this paper is to develop parallel/distributed
constant factor approximation algorithms for certain special cases of the problem.

In the parallel setting, we shall use the NC model of computation and its randomized
version RNC. Under this model, Rajagopalan and Vazirani [15] presented a randomized
parallel O(logm)-approximation algorithm for the general set cover problem. Under the
same model, Khuller et al. [10] presented a (f+ε)-approximation algorithm for any constant
frequency parameter f and ε > 0.

∗ Full version of the paper available as Arxiv preprint.

© Archita Agarwal, Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, Sambuddha Roy, and
Yogish Sabharwal;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 249–261

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.249
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

250 Set Cover Problems with Small Neighborhood Covers

In the distributed setting, we shall adopt a natural communication model which has
also been used in prior work. In this model, there is a processor for every element and
there is a communication link between any two elements e1 and e2, if and only if both
e1 and e2 belong to some common set S ∈ S. We shall view the element itself as the
processor. Each element has a unique ID and knows all the sets to which it belongs. We
shall assume the standard synchronous, message passing model. The algorithm proceeds
in multiple communication rounds, where in each round an element can send a message to
each of its neighbors in the communication network. We allow each element to perform a
polynomial amount of processing in each round and the messages to be of polynomial size.
We are interested in two performance measures: (i) the approximation ratio achieved by the
algorithm; and (ii) the number of communication rounds. Ideally a distributed algorithm
should have polylogarithmic communication rounds. Under the above distributed model,
Kuhn et al. [12] and Koufogiannakis and Young [11] presented distributed algorithms for
the general set cover problem with approximation ratios of O(log ∆) and f , respectively;
both the algorithms run in polylogarithmic communication rounds.

There are special cases of the set cover problem wherein both ∆ and f are arbitrary,
which nevertheless admit constant factor approximation algorithms. In this paper, we study
one such class of problems satisfying a criteria that we call the small neighborhood cover
property (SNC-property). This class encompasses several well-studied problems such as
vertex cover, interval cover and tree cover. Furthermore, the class subsumes set cover
problems with a constant frequency parameter f . Our results generalize the known constant
factor approximation algorithm for the latter class.

Our goal is to design unified distributed and parallel algorithms that can handle any
set cover problem falling under the above framework. In order to provide an intuition of
the SNC-property, we next present an informal (and slightly imprecise) description of the
property. We then illustrate the concept using some example problems and intuitively show
why these problems fall under the framework. The body of the paper will present the precise
definition of SNC set systems.

SNC Property. Fix an integer constant τ ≥ 1. We say that two elements are neighbors, if
some S ∈ S contains both of them. The neighborhood of an element is defined to be the set
of all its neighbors (including itself). We say that an element e ∈ E is a τ -SNC element, if
there exist at most τ sets that cover the neighborhood of e. The given set system is said to
have the τ -SNC property, if for any subset X ⊆ E, the set system restricted1 to X contains
a τ -SNC element. The requirement that every restriction has a τ -SNC element will be useful
in solving the problem iteratively.

Example Problems. We next present some example τ -SNC set cover problems.
Vertex Cover: Given a graph G, we can construct a set system by taking the edges as

the elements and the vertices as sets. In this setup, an element belongs to only two sets and
hence, the set systems defined by the vertex cover problem satisfy the 2-SNC property. In
general, set cover problems having a constant frequency parameter f would induce τ -SNC
set systems with τ = f .

Interval Cover: In this problem, we are given a timeline divided into some m discrete
timeslots 1, 2, . . . ,m. The input includes a set of intervals I, where each interval I ∈ I is
specified by a range [s(I), e(I)], where s(I) and e(I) are the starting and ending points of I.

1 the restricted set system is 〈X,S′〉, where S′ = {S ∩X : S ∈ S}

A. Agarwal, V. T. Chakaravarthy, A. R. Choudhury, S. Roy, and Y. Sabharwal 251

Figure 1 Illustration for example problems.

Each interval I also has an associated cost w(I). We say that an interval I covers a timeslot
1 ≤ e ≤ m, if e ∈ [s(I), e(I)]. The goal is to find a collection of intervals having minimum
aggregate cost such that every timeslot t is covered by at least one interval in the collection.
We can view the problem as a set cover instance by taking the timeslots to be the elements
and taking each interval I ∈ I as a set consisting of the timeslots covered by I. See the
picture on the left in Figure 1 for an illustration (ignore the Roman numerals). Consider
any timeslot e and let Q ⊆ I be the set of intervals covering e. Among the intervals in Q,
the interval Il with the minimum starting point and the interval Ir having the maximum
ending point can cover the neighborhood of e (resolving ties arbitrarily). For example, for
timeslot 3, Il = I4 and Ir = I1. Hence, the set systems defined by the interval cover problem
satisfy the 2-SNC property.

Tree Cover Problem: In the tree cover problem, we are given a rooted tree T = (V,H).
The input includes a set of intervals I, where each interval is specified as a pair of nodes
〈u, v〉 such that u is an ancestor of v. The interval I can be visualized as the path from u

to v. The interval is said to cover an edge e ∈ H, if e is found along the above path. Each
interval I has a cost w(I) associated with it. The goal is to find a collection of intervals of
minimum cost covering all the edges. We can view the problem as a set cover instance by
taking the edges to the elements and taking the intervals as sets. It is not difficult to see
that the tree cover problem generalizes the interval cover problem. See the picture on the
right in Figure 1 for an illustration. Consider any leaf edge e. Let Q be a set of intervals
covering the edge e. Among the intervals in Q, let Î be the interval extending the most
towards to the root. Note that Î covers the neighborhood of e. For example, in the figure,
for the leaf edge 〈20, 22〉, the interval I5 will serve as Î. Thus, any leaf edge satisfies the
1-SNC property. It is not difficult to see that any restriction will also contain an element
satisfying the 1-SNC property. Hence, the set systems defined by the tree cover problem
satisfy the 1-SNC property.

Bag Interval Cover Problem: This problem generalizes both vertex cover and interval
cover problems. The input consists of a timeline divided into discrete timeslots {1, 2, . . . , T}.
We have a set of n intervals I. Each interval I ∈ I has a starting timeslot s(I), an ending
timeslot e(I) and a weight w(I). Timeslots are grouped into m bags B1, B2, . . . , Bm; a
timeslot may belong to more than one bag. The interval I is said to cover a bag Bi, if it
spans at least one timeslot from the bag Bi. The goal is to find a collection of intervals having
minimum aggregate cost such that each bag is covered by some interval in the collection.

FSTTCS 2013

252 Set Cover Problems with Small Neighborhood Covers

The girth of the system is defined to be the maximum cardinality of any bag and it is denoted
g; Viewed as a set cover problem, each bag will correspond to an element and each interval
will correspond to a set. See the picture on the left in Figure 1 for an illustration. The bag
number are shown in Roman numerals. For instance, Bag I consists of timeslots {1, 4, 8}.
The girth of the system is 3.

Consider any element (bag) B containing timeslots {e1, e2, . . . , er} (with r ≤ g). For each
timeslot ei, among the intervals spanning ei select the intervals having the minimum staring
point and the maximum ending point. This set of 2r intervals can cover the neighborhood
of B. Thus any element satisfies the 2g-SNC property. Hence, the set systems defined by
the bag interval cover problem satisfies the 2g-SNC property.

Layer Decomposition. An important concept that will determine the running time of our
algorithms is that of layer decomposition. We present an intuitive description of layer
decomposition. The formal definition will be presented in the body of the paper.

Consider a set system 〈E,S〉 satisfying the τ -SNC property for some constant τ . Let
Z1 be the set of all τ -SNC elements in the given set system. Let Z2 be the set of τ -SNC
elements in the set system obtained by restricting to E − Z1. Proceeding this way, for
k ≥ 2, let Zk be the set of τ -SNC elements in the set system obtained by restricting to
E − (Z1 ∪ Z2 ∪ · · ·Zk−1). We continue the process until no more elements are left. Let L
be the number of iterations taken by this process. The sequence Z1, Z2, . . . , ZL is called the
layer decomposition of the set system 〈E,S〉. Each set Zk is called a layer. The number of
layers L is called the decomposition length.

In this paper, we will only focus on set cover problems having logarithmic decomposition
length and derive distributed/parallel algorithms with polylogarithmic rounds/running-time
for such problems. We note that there are set cover problems that induce τ -SNC systems
with a constant τ , but having arbitrary decomposition length. One example is provided by
the priority interval cover problem studied by Chakrabarty et al. [5] and Chakaravarthy et
al. [4]. This problem is a generalization of the interval cover problem. In this case, the set
systems satisfy the τ -SNC property with τ = 2, but the decomposition length would equal
the number of priorities, which can be arbitrary. The details are deferred to the full version.

We next study the decomposition length for our example problems. In the case of vertex
cover, interval cover and bag interval cover problems, we saw that all the elements satisfy the
τ -SNC property in the given system 〈E,S〉 itself. Hence, the decomposition length of these
set systems is one. In the tree cover problem, recall that all the leaf edges in the given tree
T are 1-SNC elements. Thus, all the leaf edges will belong to the first layer Z1. Once these
leaf edges are removed, the leaf edges in the remaining tree will belong to the second layer
Z2. Proceeding this way, we will get a layer decomposition in which the number of layers
will be the same as the depth of the tree; later, we describe how to reduce the decomposition
length to be O(logm).

Our Results. In this paper, we introduce the concept of τ -SNC property. We note that all
the example problems considered earlier can be solved optimally or within constant factors
using the primal-dual paradigm. All these algorithms have certain common ingredients;
these are abstracted by τ -SNC framework. We present three algorithms for the set cover
problem on τ -SNC set systems.

A simple sequential τ -approximation algorithm.
A distributed τ -approximation algorithm for τ -SNC set systems of logarithmic decom-
position length. The algorithm is randomized and uses O(log2 m) communication rounds.

A. Agarwal, V. T. Chakaravarthy, A. R. Choudhury, S. Roy, and Y. Sabharwal 253

A parallel (1 + 8τ2)-approximation algorithm for τ -SNC set systems of logarithmic de-
composition length. The algorithm can be implemented in NC.

Our algorithms have the following salient features:
They provide unified constant factor approximations for set cover problems falling under
the τ -SNC framework with logarithmic decomposition length, in both distributed and
parallel settings.
A surprising and interesting characteristic of these algorithms is that they are model
independent. Meaning, they only require the set system as input and do not need the
underlying model defining the set system. For instance, in the tree cover problem, the
algorithms do no need the structure of the tree as input. At a technical level, we show that
the layer decomposition can be constructed by considering only the local neighborhood
information; this fact is crucial in a distributed setting.

Regarding the example problems, we saw that in case of the vertex cover, interval cover
and bag-interval cover problems, the decomposition length is one. Thus our parallel and
distributed algorithms will apply to these problems. The case of tree cover problem is more
interesting. As we observed earlier, the set systems arising from the tree cover problem are
1-SNC set systems, however the the decomposition length is the same as the depth of the
tree, which could be as large as Ω(m) (where m is the number of edges). Hence our parallel
and distributed algorithms cannot be applied to this case. However, we shall show that it
is possible to reduce the decomposition length to O(logm), if we settle for a slightly higher
SNC parameter of τ = 2:

We prove that the set systems defined by the tree cover problem satisfy the 2-SNC
property with decomposition length O(logm).

In other words, the tree cover problem instances induce a 1-SNC set systems of arbitrary
decomposition length, as well as 2-SNC set systems of decomposition length O(logm). Using
the above fact, we can apply our parallel and distributed algorithms and obtain constant
factor apporoximations.

It is easy to see that for any constant f , set systems with frequency parameter f satisfy
the τ -SNC property, with τ = f . Dinur et al. [6] proved that for any f ≥ 3, it is NP-hard
to approximate the set cover problem within a factor of (f − 1 − ε), for any ε > 0. Thus,
the approximation ratio of the sequential and distributed algorithms are nearly optimal.
In the parallel setting, we present an algorithm with an approximation ratio of (1 + 8τ2).
Improving the approximation ratio is an interesting open problem.

While this is the first paper to consider the general τ -SNC framework, the specific ex-
ample problems have been studied in the sequential, parallel and distributed settings. Im-
proved algorithms are known in specific cases. We next present a brief survey of such prior
work and provide a comparison to our results.

Comparison to Prior Work on Example Problems. For the vertex cover problem, sequen-
tial 2-approximation algorithms are well known [17]. In the parallel setting, Khuller et al.
[10] presented a parallel NC algorithm having approximation ratio of 2+ε, for any ε > 0 (see
also [8]). Koufogiannakis and Young [11] presented the first parallel algorithm with approx-
imation ratio of 2. Their algorithm is randomized and runs in RNC. The above algorithms
can also be implemented in the distributed setting (see also [9]).

The interval cover problem can be solved optimally in the sequential setting via dynamic
programming. Bertossi [3] presented an optimal parallel (NC) algorithm, which can also
handle the more general case of circular arc covering. However, their algorithm requires the

FSTTCS 2013

254 Set Cover Problems with Small Neighborhood Covers

underlying model (i.e., the timeline and intervals) explicitly as input. We are not familiar
with prior work on the problem in the distributed setting.

Chakrabarty et al. [5] study the tree cover problem and its generalizations under the
sequential setting. In this setting, the problem can be solved optimally via dynamic pro-
gramming or the primal-dual paradigm. Furthermore, the constraint matrices defined by
the problem are totally unimodular (see [5]). We are not familiar with any prior work on
parallel/distributed algorithms for this problem. For this problem τ = 2 and so, our sequen-
tial/distributed algorithms provide an approximation ratio of 2. The parallel algorithm has
an approximation factor of 33. However, we note that one of the reasons for the high ratio
is that the algorithm is oblivious to the underlying model. When the model (i.e., the tree
and the paths) is given explicitly as part of the input, we can improve the approximation
ratio to 17; a discussion of this improvement is deferred to the full version of the paper.

To the best of our knowledge, the bag interval cover problem has not been considered
before. However, the notion of bag constraints has been considered in the related context
of interval packing problems (see [1, 2]). Covering integer programs (CIP) generalize the
set cover problem. These are well studied in both sequential and distributed settings (see
[11, 5], and references therein).

Proof Techniques. All the algorithms in the paper utilize the primal-dual paradigm. The
sequential algorithm is fairly straightforward and it is similar to that of the primal-dual
algorithm f -approximation algorithm for the set cover problem. The latter algorithm works
by constructing a maximal feasible solution to the dual which would automatically yield an f -
approximate integral primal solution. Our problem requires two additional ingredients. The
first is that an arbitraty maximal dual solution would not suffice. Instead, the solution needs
be constructed in accordance with the layered decomposition. Secondly, a maximal dual
solution would not automatically yield a τ -approximate integral primal solution. A reverse
delete phase is also needed. In this context, we present a polynomial time algorithm for
computing the layer decomposition of the given set system, which can also be implemented
in both parallel and distributed settings.

In the distributed setting, the only issue is that the above steps need to be performed
within polylogarithmic number of rounds. We address the issue by grouping the elements
based on the Linial-Saks decomposition [13] of the communication network.

The parallel algorithm is more involved and forms the main technical component of the
paper. For a general set system, Khuller et al. [10] (see also [8]) present a parallel procedure
for computing nearly maximal dual solution with maximality parameter of (1− ε), using the
idea of raising several dual variables simultaneously. However, the parallel running of the
procedure is O(f log(1/ε) logm), where f is the frequency parameter. In our problems, the
parameter f could be arbitrary and the above running time is not satisfactory. We present a
procedure that produces a near maximal solution with maximality parameter 1/8. While the
maximality parameter is worse compared to prior work, the running time of our procedure is
independent of f . This procedure could be of independent interest. The procedure is similar
in spirit to that of Khuller et al., but the analysis for bounding the number of iteration takes
a different approach.

As mentioned earlier, our setting requires an additional reverse delete phase, whose paral-
lelization poses interesting technical issues. Our procedure executes the phase by processing
the layer decomposition in a zig-zag manner. In iteration i, the procedure processes layer i
and performs the reverse delete for the particular layer. However, this involves revisiting the
older layers 1, 2, . . . , i− 1. Each step involves computing the maximal independent set of a

A. Agarwal, V. T. Chakaravarthy, A. R. Choudhury, S. Roy, and Y. Sabharwal 255

suitable graph, for which we utilize the parallel algorithm due to Luby [14]. The overall num-
ber of steps would be O(L2) (where L is the decomposition length) and the approximation
ratio is 8τ2 (as against the ratio τ achieved by the sequential/distributed algorithms).

Organization. Due to lack of space, the paper presents only the parallel algorithm. The
sequential and distributed algorithms are discussed the full version. Similarly, algorithms for
computing layered decomposition and logarithmic length decompositions for the tree cover
problem are deferred to the full version.

2 Preliminaries

In this section, we present the formal definition of the τ -SNC property and related concepts.
We also present algorithms for computing the layer decomposition for a given τ -SNC set
system.

τ -SNC Element: Fix an integer constant τ ≥ 1. Consider a subset of elements X ⊆ E

and an element e ∈ X. Let Q ⊆ S be the collection of all sets that contain e. The element
e is said to be a τ -SNC element within X, if for any P ⊆ Q, there exist at most r sets
S1, S2, . . . , Sr ∈ P (with r ≤ τ) such that every element in e ∈ X covered by P is also
covered by one of the τ sets:

⋃
S∈P S ∩ X =

⋃r
i=1 Si ∩ X. Note that the τ sets must be

selected from the collection P. The property is trivially true if |P| ≤ τ , but it becomes
interesting if |P| ≥ τ + 1.

τ -SNC Set System: The given set system 〈E,S〉 is said to be a τ -SNC set system if for
every subset of elements X ⊆ E, there exists an element e ∈ X which is a τ -SNC element
within X. The set system is said to be a total τ -SNC set system, if for every subset X ⊆ E,
every e ∈ X is a τ -SNC element within X. The following property is easy to verify.

I Proposition 1. If an element e ∈ X is a τ -SNC element within X, then for any Y ⊆ X

such that e ∈ Y , e is also a τ -SNC element within Y .

However, the converse of the above statement may not be true. Namely, an element
e may be a τ -SNC element within a set X, but it may not be a τ -SNC element within a
superset Y ⊃ X. To see this, suppose P is a collection of sets such that every S ∈ P contains
e. The collection P may cover an element x ∈ Y −X, which may not be covered by some τ
sets of P that cover the neighborhood of e within X.

Layer Decomposition: Consider a τ -SNC set system 〈E,S〉. The notion of layer decom-
position is defined via an iterative process, as described in the introduction. Let Z1 be the
set of τ -SNC elements within E. For k ≥ 2, let Zk be the set of τ -SNC elements within
E − (Z1 ∪ Z2 ∪ · · · ∪ Zk−1) We terminate the process when there are no elements left. Let
L be the number of iterations taken by the process. The sequence Z1, Z2, . . . , ZL is called
the layer decomposition of the given set system. Each set Zi is called a layer and L is called
the decomposition length We consider Z1 to be the left-most layer and ZL as the right-most
layer.

Computing Layer Decompositions: As part of our algorithms, we will need a procedure
for computing the layer decomposition of a given τ -SNC set system. The following lemma
provides such a procedure. We defer the proof to the full version of the paper.

FSTTCS 2013

256 Set Cover Problems with Small Neighborhood Covers

I Lemma 2. There exists a procedure for computing the layer decomposition of a given
τ -SNC set system. In the sequential setting, it can be implemented in polynomial time. In
the distributed setting, it can be implemented in O(L) communication rounds. In the parallel
setting, the algorithm takes L iterations each of which can be implemented in NC.

Remark: Notice that any τ1-SNC set system is also a τ2-SNC set system for any τ2 ≥ τ1.
The decomposition length of the system will depend on the choice of τ . The procedure
stated in the lemma will produce the layer decomposition corresponding to the value of τ
provided as input to the procedure.

3 Parallel Algorithm for τ -SNC Set Systems

In this section, we present a parallel algorithm for the set cover problem on τ -SNC set
systems with logarithmic decomposition length. The approximation ratio of the algorithm
is (1 + 8τ2). The algorithm uses the primal-dual paradigm. The primal and the dual for the
input set system 〈E,S〉 are given below.

min
∑
S∈S

x(S) · w(S)∑
S∈S : e∈S

x(S) ≥ 1 (∀e ∈ E)

max
∑
e∈E

α(e)∑
e∈S

α(e) ≤ w(S) (∀S ∈ S)

The primal LP includes a variable x(S) for each set S ∈ S and a constraint for each
element e ∈ E. The dual includes a variable α(e) for each element e ∈ E (corresponding
to the primal constraint) and a constraint for each set S ∈ S (corresponding to the primal
variable). The primal and the dual would also include the non-negativity constraints x(S) ≥
0 and α(e) ≥ 0. The algorithm would proceed in two phases, a forward phase and a reverse-
delete phase. A pseudocode for the algorithm can be found in full version.

3.1 Forward Phase
Consider a pair of solutions 〈A, α〉, where A ⊆ S is a feasible cover and α is a dual feasible
solution. For a constant λ ∈ [0, 1], we say that the above pair is λ-maximal, if for any S ∈ A,
the corresponding dual constraint is approximately tight:∑

e∈S
α(e) ≥ λ · w(S) (1)

In the forward phase, we shall construct a (1/8)-maximal solution. The procedure runs in
O(L · [logm+ log wmax

wmin
]) iterations, where each iteration can be implemented in NC, where

L is the decomposition length. As we shall see, via a standard preprocessing trick, we can
ensure that wmax/wmin is bounded by O(m). The process would increase the approximation
ratio by an additive factor of one. Thus when L is logarithmic, the procedure runs in NC.
Furthermore, our procedure would satisfy certain additional properties to be specified later.

Remark: While we shall describe our algorithm for the specific scenario of τ -SNC
set systems, it can handle arbitrary set systems and produce (1/8)-maximal solutions in
O(logm+ log(wmax/wmin)) iterations. The problem of finding such approximately maximal
solutions in parallel for general set systems is of independent interest. Khuller et al.[10] (see
also [8]) presented procedure for computing (1− ε)-maximal solutions, for any ε > 0. Their
algorithm takes O(f log(1/ε) log(m)) iterations, where f is the frequency parameter. For

A. Agarwal, V. T. Chakaravarthy, A. R. Choudhury, S. Roy, and Y. Sabharwal 257

the specific case of f = 2 (the vertex cover scenario), a parallel procedure for producing 1-
maximal solutions is implicit in the work of Koufogiannakis and Young [11]. Their procedure
runs in O(logm) iterations. While our procedure has inferior value on the parameter λ, the
number of iteration is independent of the frequency parameter f . The procedure could be
independent interest. The procedure is similar to that of Khuller et al. [10], but the goes
via a different analysis for bounding the number of iterations.

We now discuss the forward phase. Using the procedure given in Lemma 2, compute the
layer decomposition Z1, Z2, . . . , ZL, where L is the decomposition length. Initialize A = ∅
and set α(e) = 0, for all elements e ∈ E. The forward phase works in L epochs processing
the layers from left to right. For 1 ≤ k ≤ L, the goal of epoch k is to ensure that A covers
all the elements in Zk.

Consider an epoch k. While the goal of the previous k − 1 epochs would have been
to ensure coverage for Z1, Z2, . . . , Zk−1, the collection A might already be covering some
elements from Zk (unintentionally). Let Rk ⊆ Zk be the set of elements found in Zk which
are not covered by A. The purpose of epoch k is to ensure coverage for all the elements in Rk.
The epoch k works in multiple iterations. Consider an iteration j ≥ 1. A set S ∈ S is said to
participate in iteration j, if it is not already included in A. Similarly, an element e ∈ Rk is
said to participate in iteration j, if it is not all already covered by A. For each participating
set S, compute: (i) Current degree dj(S), which is the number of participating elements
found in S; (ii) Current LHS value of dual constraint of S: hj(S) =

∑
e∈S α(e); (iii) Current

difference between LHS and RHS of the dual constraint of S: cj(S) = w(S) −
∑
e∈S α(S);

(iv) Current penalty for S: pj(S) = cj(S)/dj(S) (intuitively, if S is included in S, dj(S)
elements will be newly covered and this is the cost/penalty each such element pays). For
each participating element e, compute the minimum penalty offered by each set covering e:
qj(e) = minS : e∈S pj(S). Increase (or raise) the dual variable α(e) by qj(e). This would
raise the value of the LHS of the dual constraints. For every participating set S, check if
its dual constraint is approximately tight:

∑
e∈S α(e) ≥ w(S)/8. If the above condition is

true, then add S to A. This completes the description of the iteration j. The above process
is continued until all the elements in Rk are covered by A. This completes epoch k and we
proceed to epoch k + 1.

Notice that any dual variable α(e) is raised only to an extent of its minimum penalty
qj(e). This ensures that all the dual constraints will remain satisfied at the end of each
iteration. The above procedure can be implemented in both distributed and parallel settings.
In the distributed setting, each participating element (or the corresponding node in the
network) can raise its dual variable α(e) independently using information obtained from
its neighbors. Thus, each iteration can be implemented in a single round. In the parallel
setting, in each iteration, the dual variables can be raised in parallel.

The above procedure returns a pair of solutions A and α. It is easy to see that A is
a feasible solution for the given set cover instance. Furthermore, only sets satisfying the
bound (1) are added to the collection A. Hence, the pair satisfies the desired approximate
primal slackness property.

Let us next analyze the number of iterations taken by the algorithm. The number of
epochs is L. Fix any epoch k. For any iteration j, define the minimum penalty value
pmin
j = minS pj(S) (where the minimum is taken over all sets participating in iteration
j). We now establish a bound on the number of iterations taken by the any epoch k, by
tracking minimum penalty value. For a set S participating in successive iterations j and
j + 1, its penalty may decrease (because both the values δ(S) and c(S) may decrease across
iterations). Nevertheless, the lemma below shows that the minimum penalty will increase

FSTTCS 2013

258 Set Cover Problems with Small Neighborhood Covers

by a factor of at least (3/2) across successive iterations. The proof is deferred to the full
version.

I Lemma 3. For any iteration j, pmin
j+1 ≥ (3/2)pmin

j .

We shall derive a bound on the number of iteration by making some observation on
the maximum and minimum values possible for dj(S) and cj(S). The dj(S) values can
vary between 1 and m. The maximum value possible for cj(S) is wmax; the minimum
value possible is (7/8)wmin (because sets with smaller cj(S) would have got added to A).
Therefore, epoch k will take at most O(logm + log wmax

wmin
) iterations. Hence, the overall

forward phase algorithm runs in O(L · [logm+ log wmax
wmin

]) iterations.
We next record some useful properties satisfied by the pair of solution 〈A, α〉 output by

the forward phase. These properties will be useful during the reverse-delete phase. Partition
the collection A into A1,A2, . . . ,AL, where Ak is the collection of sets added to A in the
epoch k of the forward phase. For 1 ≤ k ≤ L, let Fk be the set of elements freshly covered
by Ak (meaning, the elements covered by Ak which are not covered by A1,A2, . . . ,Ak−1).
We say that Ak is responsible for the elements in Fk. Intuitively, in epoch k, the main task
of the algorithm was to ensure coverage for Rk ⊆ Zk and the sets in Ak were selected for
this purpose. But some elements belonging to Zk+1, Zk+2, . . . , Zk might also be covered by
Ak. The set Fk consists of Rk and the above elements.

I Proposition 4. (i) Fk contains elements only from layers Zk, Zk+1, . . . , ZL, for 1 ≤ k ≤ L.
(ii) For 1 ≤ k ≤ L, the collection Ak does not cover any element from Rk+1, Rk+2, . . . , RL.
(iii) The elements found in R1, R2, . . . , RL are the only elements whose dual variables could
potentially have been raised in the forward phase.

3.2 Reverse Delete Phase
The forward phase produces a pair of solutions 〈A, α〉. In the reverse delete phase, we
prune the collection A and obtain a solution B ⊆ A such that the solution B satisfies the
approximate complementary slackness property: for any e ∈ E, if α(e) > 0 then

|{S ∈ B : S covers e}| ≤ τ2. (2)

Furthermore, we will not alter the dual variables during the reverse-delete phase. Hence, the
final pair of solutions B and α satisfy both the primal and dual approximate complementary
slackness properties, namely bounds (1) and (2). The weak duality theorem implies that
the solution B is an (8τ2)-approximate solution.

We now describe the reverse-delete phase that would satisfy the bound (2). By the third
part of Proposition 4, it suffices if we consider elements in R1, R2, . . . RL. The reverse delete
procedure is also iterative and works in L epochs, but it will consider the layers in the reverse
direction, namely, the iterations are from k = L to 1. Initialize B = ∅. At the end of epoch
k, we will ensure two properties: (i) all the elements in FL, FL−1, . . . , Fk are covered by B;
(ii) all the elements in RL, RL−1, . . . , Rk obey the slackness property (2).

Assume by induction that we have satisfied the above two properties in iteration L,L−
1, . . . , k+ 1 and consider epoch k. Our plan is to ensure coverage of Fk by adding sets from
Ak to B (recall that Ak is responsible for Fk). An important issue here is that the sets added
to B in the previous iterations L,L − 1, . . . , k + 1 will be from AL,AL−1, . . . ,Ak+1, which
are not responsible for covering the elements in Fk; nevertheless, some of these sets might
still be covering the elements in Rk ⊆ Fk (this is an unintended side-effect of the forward
phase). While ensuring slackness property (2) for the elements in Rk, we have to take the

A. Agarwal, V. T. Chakaravarthy, A. R. Choudhury, S. Roy, and Y. Sabharwal 259

above phenomenon into account and may have to delete sets from B. In doing so, we should
not affect the coverage of the elements in FL, FL−1, . . . , Fk+1. The procedure given by the
lemma below helps us in achieving the above objectives; the lemma is proved in Section 3.3.

I Lemma 5. Let A ⊆ E be a set of elements belonging to layers Zk, Zk+1, . . . , ZL, for some
given k. Let X ⊆ S be a cover for A. There exists a parallel procedure that takes X and
A as input, and outputs a collection Y ⊆ X such that: (i) Y is a cover for A; (ii) for any
element in e ∈ A belonging to layer Zk, at most τ2 sets from Y cover e. The algorithm
takes at most L iterations, where the dominant operation in each iteration is computing a
maximal independent set (MIS) in an arbitrary graph.

We are now ready to discuss epoch k. Let X = B ∪ Ak. Let A = FL ∪ FL−1 ∪ · · · ∪ Fk.
Notice that the requirements of the Lemma 5 are satisfied by A and X (because by induction,
B covers FL, FL−1, . . . , Fk+1 and Ak covers Fk). Invoke the procedure given by the lemma
and obtain a set Y.

We claim that Y satisfies two properties: (i) Y is a cover for FL, FL−1, . . . , Fk; (ii) for
any element e in RL, RL−1, . . . , Rk at most τ2 sets from Y cover e. The first property is
ensured by the lemma itself. Moreover, the lemma guarantees that the second property
is true for any element e ∈ Rk. So, consider an element e belonging to one of the sets
RL, RL−1, . . . , Rk+1. The lemma ensures that Y ⊆ X = B ∪ Ak and hence, the sets e must
come from B or Ak. Proposition 4 implies that Ak does not contain any set covering e.
Therefore, all the sets covering e must come from B; by the induction hypothesis, there are
at most τ2 such sets. We have shown that B satisfies the induction hypothesis. We set
B = Y and proceed to the next epoch k − 1.

We see that the overall algorithm produces a 8τ2-approximate solution. Let us now
analyze the running time. We can preprocess the sets so that wmax/wmin is bounded by
m, while incurring an increase approximation ratio by an additive factor of one (see [15]).
Computing the layer decomposition will take O(L) iterations and the forward phase will
take O(L logm) iterations, where each iteration can be implemented in NC. The reverse
delete phase consists of L2 iteration, where each iteration mainly involves computing MIS,
which can be computed in NC [14]. Thus, when L is logarithmic in m, the overall algorithm
runs in NC and produces an (1 + 8τ2)-approximate solution.

3.3 Proof of Lemma 5
We initialize Y = ∅. Partition the set A according to the layers: for k ≤ j ≤ L, let
Aj = A∩Zj . We process the sequence Ak, Ak+1, . . . , AL iteratively – in each iteration j, we
will add some appropriate sets from X to Y so as to ensure coverage for all elements in Aj .

Consider any element e ∈ A. Let Aj ⊆ Zj be the partition to which e belongs. Let
P(e) ⊆ X be the collection of all sets found in X which contain e. By the properties of
layered decompositions, e is a τ -SNC element within Zj ∪Zj+1∪· · ·∪ZL. Hence, there exist
sets S1, S2, . . . , Sr ∈ P(e) (with r ≤ τ) such that any element e ∈ Zj ∪Zj+1∪ · · ·ZL covered
by P(e) is also covered by one of S1, S2, . . . , Sr. We call these r sets as the petals of e.

For j = k to L, iteration j is described next. Of the elements in Aj , some of the
elements would already be covered by Y. Let the set of remaining uncovered elements be
Ãj . Construct a graph Gj with Ãj as the vertex set; add an edge between two vertices
e1, e2 ∈ Ãj , if some set S ∈ X includes both of them. Find an MIS Bj within the graph
Gj . We call the elements in Bj as anchors. For each anchor e ∈ Bj add its petals to the
collection Y. Proceed to the next iteration.

FSTTCS 2013

260 Set Cover Problems with Small Neighborhood Covers

We now prove that the collection Y constructed by the above process satisfies the prop-
erties stated in the lemma. First, consider the coverage property. For k ≤ j ≤ L, let us
argue that Y covers Aj . In the beginning of iteration j, Y would have already covered some
elements from Aj . So, we need to bother only about the remaining elements Ãj . Consider
any element e ∈ Ãj . If e was selected as part of the MIS Bj , then e is covered by its petals.
Otherwise, there must exist some element a ∈ Bj such that e and a share an edge in Gj .
This means that some set S ∈ X contains both e and a. Therefore one of the petals of a
would cover e. Since we added all the petals of a to Y, Y would cover e.

Consider the second part of the lemma. We shall first argue that any two anchors are
independent: namely, for any two anchors, a1 and a2, no set S ∈ X contains both of them.
By contradiction, suppose some set S ∈ X contains both a1 and a2. Consider two cases: (i)
the two elements belong to the same layer; (ii) they belong to different layers. The first case
will contradict the fact that Bj is an MIS, where j is the layer to which both the anchors
belong. For the second case, suppose a1 ∈ Aj1 and a2 ∈ Aj2 with j1 ≤ j2. Our assumption
is that the set S contains both a1 and a2. This would mean that a2 will belong to one of
the petals of a1. Hence, in the beginning of the iteration j2, the collection Y would have
already covered a2. This contradicts the fact that a2 is an anchor.

We return to the second part of the lemma. Consider any element e ∈ Ak. We analyze
two cases: (i) e is an anchor; (ii) e is not an anchor. In the first case, since the anchors are
independent, the petals of no other anchor can include e. So, the only sets in Y which include
e are the petals of e itself; the number of such petals is at most τ . Now, consider the second
case. Let C be the set of all anchors a such that at least one petal of a includes e. We claim
that |C| ≤ τ . By contradiction, suppose |C| ≥ τ+1. Take any τ+1 anchors a1, a2, . . . , aτ+1
found in C. The element e belongs to the layer Zk. So, it will be a τ -SNC element within
Zk ∪ Zk+1 ∪ · · ·ZL. Hence, the petals of e will cover all the anchors a1, a2, . . . , aτ+1. But,
the number of petals of e is at most τ . Hence, by the pigeon hole principle, two of these
anchors must be covered by the same petal of e. This contradicts our previous claim that
the anchors are independent. Therefore, |C| ≤ τ . The element may belong to more than
one petal of an anchor. Each anchor ai ∈ C has at most τ petals. It follows that at most
τ2 petals of the anchors can cover e. This proves the second part of the claim.

References
1 A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to

approximating resource allocation and scheduling. Journal of the ACM, 48(5):1069–1090,
2001.

2 P. Berman and B. DasGupta. Improvements in throughout maximization for real-time
scheduling. In STOC, 2000.

3 A. Bertossi and S. Moretti. Parallel algorithms on circular-arc graphs. Information Pro-
cessing Letters, 33(6):275–281, 1990.

4 V. Chakaravarthy, A. Kumar, S. Roy, and Y. Sabharwal. Resource allocation for covering
time varying demands. In ESA, 2011.

5 D. Chakrabarty, E. Grant, and J. Könemann. On column-restricted and priority covering
integer programs. In IPCO, 2010.

6 I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and the hardness
of hypergraph vertex cover. SIAM Journal of Computing, 34(5):1129–1146, 2005.

7 U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
8 R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial covering

problems. J. Algorithms, 53(1):55–84, 2004.

A. Agarwal, V. T. Chakaravarthy, A. R. Choudhury, S. Roy, and Y. Sabharwal 261

9 F. Grandoni, J. Könemann, and A. Panconesi. Distributed weighted vertex cover via
maximal matchings. ACM Transactions on Algorithms, 5(1), 2008.

10 S. Khuller, U. Vishkin, and N. E. Young. A primal-dual parallel approximation technique
applied to weighted set and vertex covers. Journal of Algorithms, 17(2):280–289, 1994.

11 C. Koufogiannakis and N. Young. Distributed algorithms for covering, packing and max-
imum weighted matching. Distributed Computing, 24(1):45–63, 2011.

12 F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In SODA,
pages 980–989, 2006.

13 N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–454,
1993.

14 M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal of Computing, 15(4):1036–1053, 1986.

15 S. Rajagopalan and V. Vazirani. Primal-dual rnc approximation algorithms for set cover
and covering integer programs. SIAM Journal of Computing, 28(2):525–540, 1998.

16 R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In STOC, 1997.

17 D. Williamson and D. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011.

FSTTCS 2013

	Introduction
	Preliminaries
	Parallel Algorithm for -SNC Set Systems
	Forward Phase
	Reverse Delete Phase
	Proof of Lemma 5

