4,409 research outputs found
Cosmic ray records in Antarctic meteorites
The cosmogenic radionuclides Be(10), Al(26), and Mn(53) and noble gases were determined in more than 28 meteorites from Antarctica by nuclear analytical techniques and static mass spectrometry, respectively. The summarized results are listed. The concentrations of Al(26) and Mn(53) are normalized to the repective main target elements and given in dpm/kg Si sub eq and dpm/kg Fe. The errors stated include statistical as well as systematical errors. For noble gas concentrations estimated errors are 5% and for isotopic ratios 1.5%. Cosmic ray exposure ages T sub 21 were calculated by the noble gas concentrations and the terrestrial residence time (T) on the basis of the spallogenic nuclide Al(26). The suggested pairing of the LL6 chondrite RKPA 80238 and RKPA 80248 and the eucrites ALHA 76005 and ALHA 79017 is confirmed not only by the noble gas data but also by the concentrations of the spallation produced radionuclides. Futhermore, ALHA 80122, clasified as an H6 chondrite, has a noble gas pattern which suggest that this meteorite belongs to the ALHA 80111 shower
Quantum information processing using strongly-dipolar coupled nuclear spins
Dipolar coupled homonuclear spins present challenging, yet useful systems for
quantum information processing. In such systems, eigenbasis of the system
Hamiltonian is the appropriate computational basis and coherent control can be
achieved by specially designed strongly modulating pulses. In this letter we
describe the first experimental implementation of the quantum algorithm for
numerical gradient estimation on the eigenbasis of a four spin system.Comment: 5 pages, 5 figures, Accepted in PR
Nuclear spin-lattice relaxation in p-type GaAs
Spin-lattice relaxation of the nuclear spin system in p-type GaAs is studied
using a three-stage experimental protocol including optical pumping and
measuring the difference of the nuclear spin polarization before and after a
dark interval of variable length. This method allows us to measure the
spin-lattice relaxation time of optically pumped nuclei "in the dark",
that is, in the absence of illumination. The measured values fall into
the sub-second time range, being three orders of magnitude shorter than in
earlier studied n-type GaAs. The drastic difference is further emphasized by
magnetic-field and temperature dependences of in p-GaAs, showing no
similarity to those in n-GaAs. This unexpected behavior is explained within a
developed theoretical model involving quadrupole relaxation of nuclear spins,
which is induced by electric fields within closely spaced donor-acceptor pairs.Comment: 9 pages, 8 figure
Tensor Approximation for Multidimensional and Multivariate Data
Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions, tensor decomposition methods have found applications in a remarkably wide range of disciplines. We briefly review the main concepts of tensor decompositions and their application to multidimensional visual data. Furthermore, we will include a first outlook on porting these techniques to multivariate data such as vector and tensor fields
Selective addressing of high-rank atomic polarization moments
We describe a method of selective generation and study of polarization
moments of up to the highest rank possible for a quantum state with
total angular momentum . The technique is based on nonlinear magneto-optical
rotation with frequency-modulated light. Various polarization moments are
distinguished by the periodicity of light-polarization rotation induced by the
atoms during Larmor precession and exhibit distinct light-intensity and
frequency dependences. We apply the method to study polarization moments of
Rb atoms contained in a vapor cell with antirelaxation coating. Distinct
ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles,
appear in the magnetic-field dependence of the optical rotation. The use of the
highest-multipole resonances has important applications in quantum and
nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure
- …