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Predictive habitat distribution models are normally assumed to sacrifice generality for
precision and reality. Nevertheless, such models are often applied to predict the
distribution of a species outside the area for which the model has been calibrated.
We investigated how the geographic extent of the data used for calibration influenced
the performance of habitat distribution models applied on independent data. We took a
multi-scale logistic regression approach by varying the grain size to develop six habitat
models for capercaillie Tetrao urogallus in Switzerland: three regional models, for the
northern Pre-Alps, eastern Central Alps and Jura mountains, respectively, and three
pooled models, each using data from two of the three regions. The six models were
validated with data from the region(s) not used for model building. We used Cohen’s
Kappa and the area under the receiver operating characteristics curve as accuracy
measures. The regional models performed well in the region where they had been
calibrated, but poorly to moderately well in the other regions. The pooled models
classified almost as well in their calibration regions as the corresponding regional
models, but generally better when validated on data from the independent region.
Hence, models built with data from single regions provide less certain predictions of
species’ distributions in other regions. We recommend building more general models
using data pooled from several regions, when the aim is to predict species’ distributions
in independent regions.
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Predictive habitat distribution models have become an

established instrument for describing species-habitat

relationships (Guisan and Zimmermann 2000, Rushton

et al. 2004). This development has been furthered by new

statistical techniques, increasing availability of data on

species distribution and land use, and new computer

tools for efficiently working with them (Guisan and

Zimmermann 2000). Statistical models often contain

surrogate variables to predict the occurrence of a species,

wherefore they are generally assumed to sacrifice gen-

erality for precision and reality (Sharpe 1990). Never-

theless, the results are often meant to apply elsewhere,

e.g. for predicting potential habitats or the distribution

of a species in areas with sparse data (e.g. Mladenoff and

Sickley 1998, Mace et al. 1999). In addition, many

studies of species-habitat relationships use a small

Accepted 8 November 2005

Copyright # ECOGRAPHY 2006
ISSN 0906-7590

ECOGRAPHY 29: 319�328, 2006

ECOGRAPHY 29:3 (2006) 319

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Serveur académique lausannois

https://core.ac.uk/display/77153067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


number of sites located in the same geographical area

(Whittingham et al. 2003). Even when data are collected

from a large range of geographical locations, the results

are often pooled as one data set (e.g. Carroll et al. 1999,

Corsi et al. 1999) without consideration of regional

differences.

Habitat models for predicting species distributions

should be evaluated carefully. For studies carried out in

homogenous regions, Fielding and Bell (1997) recom-

mended a data-partitioning technique such as k-fold

partitioning or jack-knife cross-validation. However,

such approaches have limited value for assessing model

credibility and applicability, because they do not evalu-

ate the model outside its calibration range (Guisan and

Zimmermann 2000). The most appropriate way of

evaluating predictive habitat models would be to apply

them on independent data sets from geographically

distinct regions (Manel et al. 1999, Guisan and Zim-

mermann 2000). However, this has rarely been done due

to lack of corresponding evaluation data (but cf. Fielding

and Haworth 1995, Rodriguez and Andren 1999, Morris

et al. 2001, Zabel et al. 2003).

The capercaillie Tetrao urogallus, Tetraonidae, Aves is

a large forest grouse species with specialized habitat

preferences (e.g. Schroth 1992, Sjöberg 1996) and

extensive spatial requirements (Storch 1995), and is

thus highly susceptible to habitat and landscape changes.

Capercaillie populations are declining throughout most

of their central European range (e.g. Klaus et al. 1986,

Storch 2000b) including Switzerland (Mollet et al. 2003),

as loss and fragmentation of suitable habitats have split

populations into smaller units that are only loosely

connected or even completely isolated.

At the forest stand scale, the habitat requirements of

capercaillie have been studied intensively throughout its

distribution range in Europe (e.g. Klaus et al. 1985,

Leclercq 1987, Gjerde 1991, Picozzi et al. 1992, Storch

1993a, Sjöberg 1996, Bollmann et al. 2005). Some

habitat features are common to most distribution areas.

Capercaillie requires open-structured coniferous or

mixed forest (Klaus et al. 1986) with a lush field layer

(Picozzi et al. 1992, Schroth 1992, Storch 1994, Sjöberg

1996) ideally dominated by bilberry Vaccinium myrtillus,

(Klaus et al. 1985, Rolstad 1988, Schroth 1992, Storch

1993a, Baines et al. 2004).

Conservation actions have not been able to slow down

the population decline, despite the good knowledge base

on small-scale habitat preferences. Therefore, remedy is

now sought at larger spatial scales. Telemetry studies in

Scandinavia and in central Europe have revealed that

spatial requirements of capercaillie are extensive (Wegge

and Larsen 1987, Storch 1995). Further, they have

shown that capercaillie populations are sensitive to the

spatial configuration of preferred habitats and to forest

fragmentation (Rolstad and Wegge 1989, Wegge et al.

1992). Recent work has supported the notion that

capercaillie populations are strongly driven by land-

scape-scale processes (Storch 1997, Kurki et al. 2000).

These processes, however, have insufficiently been ad-

dressed in predictive habitat modelling designed for large

areas. Most habitat models presently available for

capercaillie do not include spatial variables (Storch

2002), do not address the effect of spatial grain size

explicitly (Sachot et al. 2003, Sachot and Perrin 2004), or

do not include different grain sizes in a single statistical

model (Suchant 2002). None of the previous studies

addressed the effect of geographic extent by studying

habitat-relationships in different regions or by validating

resulting models outside the calibration region. Thus,

uncovering larger-scale habitat relationships is still an

important research need in those regions where the

species is endangered (Storch 2000a), and analyses

should be conducted at multiple scales (Keppie and

Kierstead 2003).

In this study, we investigated how the data used for

model calibration (geographic extent) influence the

performance of habitat models on independent evalua-

tion data (generality). We developed three separate

habitat models for capercaillie for three regions that

differ strongly in terms of climate, landscape structure

and land use. These regional models were compared with

three models each built with pooled data from two of the

three regions. To assess their precision and generality the

six models were validated with data from the region(s)

not used for model building.

Methods

Study area and species data

In Switzerland, capercaillie occurs in three mountain

regions: Jura, northern Pre-Alps, and eastern Central

Alps (Fig. 1). These regions differ in terms of climate,

topography and geology, forest distribution and human

land use. In the eastern Central Alps (600�3500 m a.s.l.),

the climate is continental with a relatively low precipita-

tion rate (800�2000 mm yr�1), cold winters but warm

and dry summers. Under these conditions, the upper

natural tree-line is at ca 2300 m a.s.l. Large contiguous

and mostly conifer-dominated forests spread along the

valley slopes. Generally, human population density and

tourist pressure are low, except for some areas that are

used intensively for winter and summer sport activities.

The northern Pre-Alps (400�2800 m a.s.l.) are char-

acterized by a more atlantic climate with cold-temperate

winters and wet summer months which limits the upper

tree-line to ca 2000 m a.s.l. High precipitation (2000�
3000 mm yr�1) and often impervious soils have allowed

mires to develop in many areas. Along their fringes,

forest stands are naturally open and diversely structured.

They have thus little commercial value but are favoured

by capercaillie and other woodland grouse species. The
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northern Pre-Alps have been strongly altered by farming

practices that depend mostly on livestock resulting in a

patchy pattern of forest and pasture over large areas. The

northern Pre-Alps are within a half day’s drive of the

major Swiss cities, and thus are frequently used for

recreation activities, which may lower survival and

reproduction rate of capercaillie in some instances.

The Jura Mountains (800 km2, 400�1700 m a.s.l.) are

a calcareous mountain range in the north-western part

of Switzerland, geographically separated from the Pre-

Alps and the Alps by the plateau (width of 30�40 km).

The Jura Mountains have an atlantic climate similar to

that of the northern Pre-Alps (average precipitation

2000 mm yr�1) but are, in contrast to the other two

regions, characterized by gentle slopes and larger,

contiguous forest expanses.

We used data from parts of the eastern Central

Alps (1700 km2, 478�46850?N. 9830?�10830?E), from

the northern Pre-Alps (2800 km2, 46845? �47825?N.

88�9830?E) and from the Jura Mountains (800 km2,

46820?�46855?N. 6810?�6845?E) for the habitat models

(Fig. 1). Capercaillie distribution data originated from

our own fieldwork (2000�2003, Pre-Alps and Alps and

1998�2002, Jura Mountains) and from several regional

inventories. They include both sightings and indirect

evidence of capercaillie presence (faeces, feathers, foot-

prints, etc.). The records stem mainly from late winter

and spring surveys, but were supplemented with other

data available (records by game wardens, ornithologists,

foresters, etc.) from throughout the year. See Graf (2005,

Appendix I) and Sachot (2002) for detailed descriptions

of the data set on capercaillie occurrence.

We used only presence-absence data, since these tend

to better explain habitat relationships of rare species

than abundance data (Cushman and McGarigal 2004).

Presence-absence data were processed in grid format

with cell size of 1 ha, i.e. the same resolution as in most

environmental data used for analysis. We defined cells as

‘‘presence’’ if they contained at least one capercaillie

record. Not all presence cells were used in the analyses,

as their clumped distribution could have led to auto-

correlation problems. Therefore, we reduced the number

of presence cells, so that the minimum distance between

any two presence cells was at least 500 m. Absence cells

used in the analysis were a randomly selected subset of

cells with a minimum distance of 1 km to the nearest

presence cell, a minimum distance of 500 m to the

nearest absence cell and a maximum distance of 5 km to

the nearest presence cell. The first rule produced a

minimum buffer area of ca 3 km2 around all observa-

tions, an area that equals about the size of the home

range of a capercaillie individual (Rolstad et al. 1988,

Storch 1995). By allowing a buffer between presence and

absence cells, we also avoided that cells where no record

was obtained, but where capercaillie occurred in reality

were erroneously classified as absence. The last rule

ensured that only those areas were included that are

located within a realistic dispersal distance from forest

stands actually used by capercaillie (Storch and Segel-

bacher 2000, Segelbacher et al. 2003). By doing so, we

implicitly assumed that habitat suitability was the reason

for the absence of capercaillie, rather than large-scale

population effects.

Environmental variables

As we focussed on generality in habitat models, we

decided to keep our models simple by using only three

predictor variables: proportion of forest, average tem-

perature, and topographic position (Table 1). These

variables had been found to be good predictors for

Fig. 1. Map of Switzerland
with the three study regions and
their use for modelling. The
dashed line separates the
regions of the northern Pre-
Alps and the eastern Central
Alps. The three study regions
do not represent the whole
capercaillie distribution in
Switzerland.
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capercaillie habitat in Switzerland (cf. Graf et al. 2005)

and had also been reported in the literature as having

explanatory value for distribution or population dy-

namics of capercaillie elsewhere. Vegetation type and

spatial vegetation patterns influence population density,

home range size, mortality and reproductive success of

capercaillie (Wegge and Rolstad 1986, Storch 1994, 1995,

Kurki et al. 2000, Baines et al. 2004). Local climate is an

important factor affecting reproduction of capercaillie,

as dry and warm weather in early summer reduces chick

mortality (Moss et al. 2001, Summers et al. 2004).

Further, there is evidence that capercaillie preferably

occur on ridges and upper slopes than in valley bottoms

(e.g. Roth and Nievergelt 1975, Suchant 2002).

We prepared the three independent variables in grid

format with a cell size of one hectare. With a moving

window analysis (ARC/INFO 8.3, ESRI, Redlands CA,

USA; focal statistics), we calculated the mean values for

a circular neighbourhood of each grid cell for proportion

of forest and topographic position. The window size was

increased stepwise from 1 ha up to just over 1100 ha,

which is about twice the size of a mean home range

(Storch 1995). We included 10 window sizes, hereafter

called ‘‘spatial grain size’’ (the radius [100 m] of the

circular analysis window is given in parentheses): 1, 5 (1),

13 (2), 29 (3), 49 (4), 81 (5), 113 (6), 253 (9), 529 (13), and

1129 ha (19). The uneven numbers result from the

moving window algorithm that works with entire grid

cells. We did not vary spatial grain size for the variable

‘‘average temperature’’ because 1) the data set stems

from interpolation of point data and 2) the variable had

shown no sensitivity to spatial grain size in earlier

analyses.

Statistical modelling

Modelling procedure

First, we calculated univariate models for the two

predictor variables ‘‘proportion of forest’’ and ‘‘topo-

graphic position’’ at each spatial grain size. For the

variable ‘‘average temperature’’, we calculated univariate

models only at the smallest scale (1 ha). The univariate

models provided information on the response and

predictive power of each predictor variable and helped

us to define the ‘‘best’’ grain size at which a variable

explained the highest amount of the variance in caper-

caillie presence-absence (cf. Graf et al. 2005).

Second, we developed six multivariate models. We

calculated a regional model for each of the three regions

separately (N�/222; NPres�/83, NAbs�/139) and three

models using pooled data from two of the three regions

(N�/444; NPres�/166, NAbs�/278). All the six models

were then evaluated on data from the region(s) not used

for model building. The sample size of the presence and

absence cells purposefully differed to account for the

larger variance in the absence data. For the multivariate

models, we used the two variables ‘‘proportion of forest’’

and ‘‘topographic position’’ at the scales at which they

explained best in the univariate models (Graf et al.

2005). Thus, we defined the ‘‘best’’ scales for PFOR and

TOPO for the three regions and for the three pooled data

sets (Pre-Alps/Alps, Pre-Alps/Jura, Alps/Jura) to calcu-

late the multivariate models. For the variable topo-

graphic position in the Jura Mountains, we chose a

smaller moving window size than the one with the

highest explained variance, because the variable is

increasingly correlated with average temperature as

window size increases. We chose the largest possible

moving window size for which Spearman’s correlation of

the two variables did not exceed a value of 0.7 (cf.

Fielding and Haworth 1995).

One might argue that for comparing the generality of

habitat models between regions it would have been better

to use the independent variables in all models at the

same spatial grain size. We tested this alternative

approach and calculated six additional models where

we entered the three variables at one arbitrarily chosen

grain size: proportion of forest at a scale of 256 ha,

average temperature and topographic position at 1 ha.

The two approaches gave similar results and entailed the

same conclusions. Therefore, the results of the alter-

native approach are not shown.

Table 1. Environmental variables used as independent predictors.

Variable description Abbreviation Unit

Proportion of forest
Proportion of forest cells available within the moving window around a focal cell; based on a grid data set
(1�/forest, 0�/not forest; cell size 20 m) derived from thematic pixel maps (PK25#2004, SWISSTOPO,
DV033594, scale of 1:25 000).

PFOR %

Average temperature
Long-term monthly means of average June temperature; spatially interpolated from point data from the
Swiss net of climate stations using a digital elevation model (as described in Zimmermann and Kienast
1999).

TAVE 8C

Topographic position
Measures the exposure of a location compared to the surrounding terrain; positive values indicate relative
ridges and hilltops, negative values indicate sinks, gullies and valley bottoms (see Zimmermann and Kienast
1999, Guisan et al. 1999, Zimmermann and Roberts 2001).

TOPO unitless
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To test for spatial dependence of residuals, we

calculated Moran’s I in R2.0.0 (Ihaka and Gentleman

1996, extensions used: spdep, tripack, maptools) for the

first lag. Additionally, we calculated spatial correlograms

to detect possible spatial dependence of residuals at

higher lags.

Logistic regression

Logistic regression (Menard 2002, Manly et al. 2002)

was applied to all habitat modelling using the software

SPSS 11.0 (Chicago, IL, USA). In all multivariate

models, we applied a threshold probability of 0.2 for

whether a predictor variable was omitted (Hosmer and

Lemeshow 2000). In all modelling, we included untrans-

formed variables, as normality is not required and error

terms are allowed to have non-Gaussian distributions

(Guisan and Zimmermann 2000). By plotting the

frequency distribution of the predictor variables for

both presence and absence cells, we searched for the

type of response. In the case of a unimodal response

(average temperature TAVE), the squared predictor

variable was also included in the analyses (TAVE2).

Calibration and validation

For assessing the model fit, we used R-square Nagel-

kerke (Nagelkerke 1991), which measures the variance in

the dependent variable explained by the independent

variables. To evaluate model accuracy, we used measures

based on a confusion matrix (Fielding and Bell 1997,

Boyce et al. 2002) and calculations were done with

SimTest B/http://www.wsl.ch/staff/niklaus.zimmermann/

programs/progs/�/. A confusion matrix contains the

predicted and observed presences and absences based

on a fitted model. From this matrix, a number of

different accuracy measures can be derived. We use the

correct classification rate (CCR) and Kappa-statistics

(Monserud and Leemans 1992). Kappa measures the

actual agreement minus the agreement expected by

chance and can take values between 0 (no agreement)

and 1 (perfect agreement). We used Kappa both at a

threshold of 0.5 (Kappa_05) and at the optimized

threshold (Kappa_opt). To determine the optimized

threshold, we calculated Kappa for all possible threshold

values from 0.01 to 0.99 and considered the threshold to

be best at which Kappa attained the highest value. If a

model is applied in an area where the species’ distribu-

tion is poorly known, the threshold can not be opti-

mized. Here, a threshold of 0.5 would be the default

choice. Therefore, we considered Kappa_05 to be a

particularly important measure. Further, we used the

area under the receiver operating characteristics curve

(AUC, Deleo 1993) as a measure of overall accuracy that

is not dependent upon a particular threshold (Fielding

and Bell 1997, Boyce et al. 2002, McPherson et al. 2004).

AUC varies between 0 and 1. A value of 0.8 for the AUC

means that for 80% of the time a random selection from

the presence cells will have a predicted score greater than

a random selection from the absence cells.

Results

Univariate analysis

Each of the three predictor variables had high predictive

power in the univariate models (R2
N�/0.3), except TOPO

in the Pre-Alps, TAVE in the Alps and PFOR in the Jura

(Table 2). The explained variance of PFOR and TOPO

differed markedly among the spatial grain sizes and

among the three regions (Fig. 2). The spatial grain sizes

at which a variable explained the highest amount of the

variance in capercaillie presence-absence were used for

the multivariate models (see Methods).

Multivariate analysis

All six models (Pre-Alps, Alps, Jura, Pre-Alps/Alps, Pre-

Alps/Jura, Alps/Jura) explained a large amount of the

variance of the presence-absence pattern (R2
N�/0.70) and

were very successful in predicting capercaillie presence-

absence in the calibration area (CCR_05�/86,

Kappa_05�/0.71; Table 3). When applied outside the

calibration region(s), the regional models performed on

average weaker (mean AUC�/0.89, mean Kappa_05�/

0.46) than the models built with pooled data (mean

AUC�/0.91, mean Kappa_05�/0.54; Table 3). Even

more important may be that the minimum Kappa_05

value is 0.26 (poor prediction) in the regional models

and 0.46 (moderate prediction) in the models built with

pooled data. Thus, using data from two regions for

model calibration reduced the probability of poor

prediction in a new region.

In the multivariate models, average temperature

(TAVE) and proportion of forest (PFOR) were signifi-

cant in all six models (Table 4). These two variables also

explained much of the variance of capercaillie occur-

rence in the univariate analyses in all regions (Table 2).

The models developed with the pooled data and the

regional model for the Pre-Alps contained both TAVE

and the squared variable TAVE2 and thereby simulated a

unimodal response of capercaillie occurrence to average

temperature. Topographic position (TOPO) was only

significant in models using data from the Alps.

In three cases, model residuals on the first lag were

spatially auto-correlated (Moran’s I different from 0 at

the 5% significance level). Those models were the ones

where the data-set of the central Alps was included. The

regional model built with data from the Alps attained

the highest (but still low) values (Moran’s I�/0.080,
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p�/0.009), the other coefficients were close to 0 (model

for Pre-Alps/Alps, Moran’s I�/0.016, p�/0.020; model

for Alps/Jura, Moran’s I�/0.036, p�/0.038). On the

second lag, all Moran’s I coefficients were smaller than

0.05).

Discussion

Habitat distribution models often have limited predictive

power when applied to other regions (Fielding and

Haworth 1995, Corsi et al. 1999, Guisan and Zimmer-

mann 2000, Lawler and Edwards, Jr 2002). The aim of

this study was to explore the generality of habitat

distribution models for capercaillie using data from

three mountainous regions. We found that models

calibrated with data from one region had lower pre-

dictive success outside the calibration region than

models using pooled data from two regions. In the

following paragraphs we discuss our results by addres-

sing three main aspects. First, we discuss the structure

and general performance of the six habitat models.

Second, we evaluate model precision and generality in

view of the data used for calibration. Third, the role of

direct and indirect (surrogate) predictor variables for

model generality is assessed.

The habitat models

Our habitat models based on three predictor variables

explain much of the variance in the large-scale presence-

absence pattern of capercaillie (R2
N�/0.7). The high

model performance may have two major reasons. First,

the values of the selected variables discriminate strongly

between presence and absence locations thus resulting in

good model performance. Second, the rule to define

absence locations (minimum distance of 1000 m to next

presence cell; cf. Graf et al. 2005) increases model

performance to some albeit limited degree.

The variables ‘‘average temperature’’ and ‘‘proportion

of forest’’ that came out significant in all six models have

been reported to influence capercaillie occurrence also in

other parts of its distribution range. Its need for large

and well-connected forests is documented both for

central Europe (Storch 1995, Sachot and Perrin 2004)

and Scandinavia (Kurki et al. 2000, Linden et al. 2000).

Capercaillie also occurs mainly in the temperature zone

that allows coniferous forests to grow naturally (Klaus et

al. 1986).

Only a few studies, mainly from central Europe, have

discussed the role of topography in habitat use of

capercaillie (Roth and Nievergelt 1975, Eiberle 1976,

Schroth 1992, Suchant 2002). In our study, topographic

position was significant in two pooled models (Pre-Alps/

Alps, Alps/Jura) and in the regional model of the Alps.

Thus, under certain landscape conditions (alpine topo-

Table 2. Univariate logistic regression models of capercaillie occurrence in three Swiss regions: spatial grain size (Scale [ha]);
explained variance expressed by R-square Nagelkerke (R2

N); type of response to capercaillie occurrence, i.e. linearly positive (pos),
linearly negative (neg) or unimodal (uni).

Pre-Alps Alps Jura

Variable Scale R2
N Response Scale R2

N Response Scale R2
N Response

PFOR 253 0.426 pos 81 0.701 pos 1129 0.241 pos
TAVE 1 0.577 uni 1 0.233 uni 1 0.763 neg
TOPO 1129 0.162 pos 5 0.429 pos 1129 0.459 pos

Fig. 2. Explained variance
(R-square Nagelkerke) of
univariate models as a function
of spatial grain size for the two
predictor variables ‘‘proportion
of forest’’ and ‘‘topographic
position’’. The three curves
used data from the northern
Pre-Alps (empty circles), the
eastern Central Alps (triangles)
and the Jura Mountains (filled
circles).
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graphy) capercaillie avoid valley bottoms and preferably

inhabit ridges and upper slopes. This could be explained

1) by ridges and upper slopes having better habitat

quality or 2) by predator-avoidance behaviour. Caper-

caillie disturbed by predators or humans tend to escape

downhill (own observations), where they need habitat

Table 3. Accuracy of multivariate capercaillie habitat distribution models built with data from one region (Pre-Alps, Alps, Jura) and
with pooled data from two regions (Pre-Alps/Alps, Pre-Alps/Jura, Alps/Jura); sample size in calibration data set (N_calib), R-square
Nagelkerke (R2

N), Kappa at a threshold of 0.5 (Kappa_05), Kappa at optimized threshold (Kappa_opt), Correct classification rate at
a threshold of 0.5 (CCR_05), Area under the ROC-curve (AUC). Bold face indicate validation results against independent data.

Model calibration

Model N_Calib R2
N Kappa_05 CCR_05

Pre-Alps 222 0.738 0.81 0.91
Alps 222 0.845 0.82 0.91
Jura 222 0.867 0.86 0.93
Pre-Alps/Alps 444 0.702 0.71 0.86
Pre-Alps/Jura 444 0.702 0.72 0.86
Alps/Jura 444 0.755 0.77 0.89

Validation on Pre-Alps (N�/222)

Model Kappa_05 Kappa_opt CCR_05 AUC

Pre-Alps 0.81 0.81 0.91 0.95
Alps 0.26 0.56 0.71 0.89
Jura 0.49 0.68 0.77 0.91
Pre-Alps/Alps 0.64 0.73 0.84 0.94
Pre-Alps/Jura 0.65 0.75 0.84 0.94
Alps/Jura 0.46 0.72 0.77 0.93

Validation on Alps (N�/222)

Model Kappa_05 Kappa_opt CCR_05 AUC

Pre-Alps 0.65 0.75 0.82 0.94
Alps 0.82 0.83 0.91 0.98
Jura 0.39 0.53 0.68 0.84
Pre-Alps/Alps 0.77 0.82 0.89 0.96
Pre-Alps/Jura 0.57 0.62 0.78 0.89
Alps/Jura 0.81 0.83 0.91 0.96

Validation on Jura (N�/222)

Model Kappa_05 Kappa_opt CCR_05 AUC

Pre-Alps 0.57 0.72 0.77 0.94
Alps 0.42 0.48 0.74 0.83
Jura 0.86 0.88 0.93 0.99
Pre-Alps/Alps 0.60 0.62 0.80 0.91
Pre-Alps/Jura 0.77 0.81 0.89 0.98
Alps/Jura 0.74 0.74 0.88 0.95

Table 4. Variables in the multivariate capercaillie habitat models built with data from one region (Pre-Alps, Alps, Jura) and with
pooled data from two regions (Pre-Alps/Alps, Pre-Alps/Jura, Alps/Jura); spatial grain size used for each variable (Scale [ha]); type
of response, i.e. linear positive (pos) or linear negative (neg); level of significance (***: p-valueB/0.001, **: 0.01�/p�/0.001,
*: 0.1�/p�/0.01).

Pre-Alps Alps Jura

Variable Scale Response Sig. Scale Response Sig. Scale Response Sig.

PFOR 253 pos *** 81 pos *** 1129 pos ***
TAVE 1 pos * 1 neg *** 1 pos
TAVE2 1 neg * 1 neg 1 neg ***
TOPO 1129 pos 5 pos * 113 neg

Pre-Alps/Alps Pre-Alps/Jura Alps/Jura

Variable Scale Response Sig. Scale Response Sig. Scale Response Sig.

PFOR 253 pos *** 529 pos *** 113 pos ***
TAVE 1 pos *** 1 pos ** 1 pos ***
TAVE2 1 neg *** 1 neg *** 1 neg ***
TOPO 5 pos ** 1129 pos 29 pos ***
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suitable for landing, hiding, and from where they can

safely walk back.

We used only three environmental variables in this

study to ensure a maximum comparability of the

different habitat models. To include a number of

variables that describe local conditions could have

masked the effect of the geographic extent of the

calibration data on model generality. We are well aware

that important habitat factors are not included in the

analysis, such as canopy cover (e.g. Storch 1993b,

Suchant 2002, Sachot et al. 2003) or field layer (e.g.

Schroth 1992, Bollmann et al. 2005).

Model precision versus generality

Before evaluating the generality of our models we

address the role of different accuracy measures to assess

model performance on validation data. Threshold-de-

pendent accuracy measures are believed to be inferior to

AUC, which provides a threshold-independent measure

of accuracy (Guisan and Zimmermann 2000). In our

case, all models attained an AUC]/0.8 when applied

outside the calibration area, and thus have excellent

predictive value (cf. Hosmer and Lemeshow 2000).

Consequently, all models (regional and pooled models)

seem to possess high generality. However, if habitat

models are used in conservation practice quite often a

particular threshold has to be applied to make spatially

explicit predictions for presence-absence. Such predic-

tions can, for instance, be included in a Species Action

Plan. Further, if a habitat model has to be applied

outside its calibration area with no or only sparse data

on species distribution, the threshold can not be

optimized. Therefore, we believe that Kappa_05 is a

very important measure of model accuracy, especially if

the focus of a study is on model generality. In our study,

the minimum value of Kappa_05 for the regional models

was 0.26 indicating a poor prediction (cf. Monserud and

Leemans 1992). By contrast, the models built with

pooled data from two regions predicted moderately

well to well. Thus, applying pooled models reduces the

probability of coming up with poor predictions outside

the calibration region.

Though not surprising, it is still noteworthy that three

reasons may be responsible for the differences in model

performance. First, if species-habitat relationships are

influenced by regional conditions, generality of a model

will be higher with increasing variation in the data used

for calibration (see Dettmers et al. 2002). This is

supported by our finding that using pooled data from

two regions (and thus increasing variation in calibration

data) increases the predictive success of the model

outside its calibration region. Second, models were

successful in predicting species distribution in distinct,

independent regions if these new regions are ecologically

similar with respect to the predictor variables (Rodriguez

and Andren 1999, Morris et al. 2001, Whittingham et al.

2003). In our case, the central Alps differ more from the

two other regions than the Pre-Alps differ from the Jura

Mountains. As a consequence, lowest accuracy values

were attained by the regional Alpine model tested on the

other two regions and by the regional models built with

data from the Pre-Alps and the Jura tested on data from

the Alps. Third, generality of a model depends on the

degree to which the predictor variables have direct

ecological significance, as opposed to being surrogate

variables (Guisan and Zimmermann 2000). This impor-

tant aspect will be discussed separately in the next

paragraph.

Causality versus correlation

The loss of predictive power when a habitat distribution

model is applied in a distinct region has two major

reasons. First, species-habitat relationships may vary

significantly between regions (Wiens et al. 1987, Fielding

and Haworth 1995). This part of the loss of predictive

power can not be reduced by using better predictor

variables. Second, indirect variables may lower the

generality of habitat distribution models (Guisan and

Zimmermann 2000, Gibson et al. 2004), because asso-

ciation of such variables to the direct habitat factors and

thus to the species occurrence may differ between

regions. Therefore, it is desirable to predict the distribu-

tion of a species on the basis of ecological parameters

that are assumed to be the causal (direct) driving forces

for its distribution and abundance (Guisan and Zim-

mermann 2000). Such direct variables are often not (yet)

available consistently over large areas, and this leads to a

common dilemma in conservation biology: spatially

explicit concepts or guidelines for solving conservation

problems are often required immediately. Consequently,

there is not enough time available for a systematic data

assessment. Therefore, it is important to investigate the

power and limitations of large-scale habitat distribution

models that are at least partly based on indirect

predictor variables. Our models predicted the large-scale

pattern of capercaillie presence-absence well in the

calibration region and the models built with pooled

data from two regions performed fairly well on indepen-

dent data from a spatially separated, ecologically distinct

region. Thus, the predictors we used must at least partly

have a direct effect on capercaillie occurrence.

Conclusions

The results of this study support earlier warnings that

caution is required when habitat distribution models are

applied in other geographical regions. The relationship
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of species occurrence to a predictor variable can differ in

its direction and strength. Indirect variables can be

problematic in that they reduce the applicability of the

model to larger geographical extents. Applying models

can thus lead to poor predictions if the region where the

model is applied differs ecologically from the calibration

region. We circumvented these problems by building

habitat models with data pooled from two regions that

were different with respect to climate, topography, forest

distribution patterns and tree species composition. This

approach produced models of higher generality without

loosing much precision when applied in the individual

regions. Our models with pooled data therefore meet the

prerequisites for predictive models to be useful as

conservation and management tools. We recommend

testing our pooling approach for its general usefulness

with other animal species and habitats.
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