2,913 research outputs found
The fluorine-NHC gauche effect: a structural and computational study
Herein, we report the synthesis and X-ray structural analysis of a collection of fluorinated metal
N-heterocyclic carbenes (Ag, Au, Pd, Rh, Ir) and their precursor salts. The common structural
feature of these species is a flanking fluoroethyl group which is either freely rotating or
embedded within a bicyclic framework. Solid state analysis confirmed a gauche conformational
preference in all cases with the fluorine adopting a syn clinal arrangement (ϕ[NCCF] ~ 60°) with
respect to the triazolium nitrogen at the vicinal position of the NHC. A density functional theory
analysis was employed to quantify these effects and evaluate the influence of electronic
modulation of the carbenic carbon [(C=N+); neutral carbene (C:); metal-bound carbene (C=M)],
on the relative gauche / anti preference, thus highlighting the potential of this conformational
phenomenon as a useful molecular design strategy for controlling the topology of organometallic
complexes
LASIG II - Pulsed laser ion generator study Final report
Ion current produced by illuminating materials with focused output of pulsed ruby lase
Recommended from our members
Mars simulated exposure and the characteristic Raman biosignatures of amino acids and halophilic microbes
Though Raman bands of α-amino acids (AA) are well documented, often only the strongest intensity bands are quoted as identifiers (e.g. Jenkins et al., 2005; De Gelder et al., 2007; Zhu et al., 2011). Unknown regolith mixtures on Mars-sampling missions could obscure these bands. Here the case is made for determining, via a statistical method, sets of characteristic bands to be used as identifiers, independent of band intensity or number of bands (Rolfe et al., 2016). AA have upwards of 25 potentially identifying bands and this method defines sets of 10–19 bands per AA. Examination of AA-doped Mars-like basalt resulted in a maximum of eight bands being identified, as some characteristic bands were obscured by mineral bands, including the strongest intensity band in some cases. This proved the need for characteristic bands to be defined, enabling successful identification of AA. The ESA ExoMars Rover mission will crush and then pass the sample to the Raman Laser Spectrometer. We crushed a Mars-like basalt to a similar grain size expected to be created by the rover. Our samples were doped with 1 % (by weight) AA samples, resulting in no detection of AA, because of loss of original spatial context and spaces between the grains. We recommend that Raman spectroscopy on future missions should be conducted before the sample is crushed. Halite-entombed halophilic microbes, known to survive being entombed, were exposed to Mars-like surface (including temperature, pressure, atmospheric composition and UV) and freeze-thaw cycle (plus pressure and atmospheric composition) conditions. This test on the survival of the microbes showed that survival rates quickly deteriorated in surface conditions, but freeze-thaw cycle samples had well preserved Raman biosignatures, indicating that similar signatures could be detectable on Mars if similar life persists in evaporitic material or brines today
Recommended from our members
Pyrolysis-GC×GC-TOFMS to characterize carbonaceous chondrites
Using pyrolysis-GCxGC-TOFMS to analyze organic carbon in carbonaceous chondrites gives a massive increase in both sensitivity and structural information from samples when compared to traditional Py-GC-MS
Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission
Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836C4A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured 15 decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1S616), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1S637), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased PDRP1 S616 levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1S616 levels. Taken 20 together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel 25 therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimer’s, Huntington’s and Parkinson’s diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis
Estimating variance components and predicting breeding values for eventing disciplines and grades in sport horses
Eventing competitions in Great Britain (GB) comprise three disciplines, each split into four grades, yielding 12 discipline-grade traits. As there is a demand for tools to estimate (co)variance matrices with a large number of traits, the aim of this work was to investigate different methods to produce large (co)variance matrices using GB eventing data. Data from 1999 to 2008 were used and penalty points were converted to normal scores. A sire model was utilised to estimate fixed effects of gender, age and class, and random effects of sire, horse and rider. Three methods were used to estimate (co)variance matrices. Method 1 used a method based on Gibbs sampling and data augmentation and imputation. Methods 2a and 2b combined sub-matrices from bivariate analyses; one took samples from a multivariate Normal distribution defined by the covariance matrix from each bivariate analysis, then analysed these data in a 12-trait multivariate analysis; the other replaced negative eigenvalues in the matrix with positive values to obtain a positive definite (co)variance matrix. A formal comparison of models could not be conducted; however, estimates from all methods, particularly Methods 2a/2b, were in reasonable agreement. The computational requirements of Method 1 were much less compared with Methods 2a or 2b. Method 2a heritability estimates were as follows: for dressage 7.2% to 9.0%, for show jumping 8.9% to 16.2% and for cross-country 1.3% to 1.4%. Method 1 heritability estimates were higher for the advanced grades, particularly for dressage (17.1%) and show jumping (22.6%). Irrespective of the model, genetic correlations between grades, for dressage and show jumping, were positive, high and significant, ranging from 0.59 to 0.99 for Method 2a and 0.78 to 0.95 for Method 1. For cross-country, using Method 2a, genetic correlations were only significant between novice and pre-novice (0.75); however, using Method 1 estimates were all significant and low to moderate (0.36 to 0.70). Between-discipline correlations were all low and of mixed sign. All methods produced positive definite 12312 (co)variance matrices, suitable for the prediction of breeding values. Method 1 benefits from much reduced computational requirements, and by performing a true multivariate analysis
Multi-transmission-line-beam interactive system
We construct here a Lagrangian field formulation for a system consisting of
an electron beam interacting with a slow-wave structure modeled by a possibly
non-uniform multiple transmission line (MTL). In the case of a single line we
recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce.
Since a properly chosen MTL can approximate a real waveguide structure with any
desired accuracy, the proposed model can be used in particular for design
optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear
identification of the mathematical source of amplification, (ii) exact
expressions for the conserved energy and its flux distributions obtained from
the Noether theorem. In the case of uniform MTLs we carry out an exhaustive
analysis of eigenmodes and find sharp conditions on the parameters of the
system to provide for amplifying regimes
Recommended from our members
Fractionated Martian Atmosphere – the Case of the Nakhlites, Revisited with Experiments
We report on fractionated noble gases in the Martian meterorites - a literature survey and new data
- …
