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Introduction:  Noble gases in Martian meteorites 

have three endmembers. First, the Martian atmosphere 

as measured by Viking [1,2] and found in the sher-

gottites [3]. This component, more specifically its 

match between in situ measurements on Mars and data 

from the shergottite meteorites, established the link 

between the SNC meteorites and Mars. The second 

component, found in Chassigny [4], is considered to be 

Martian interior. The third component has atmospheric 
129Xe/132Xe but lower Kr/Xe elemental ratios than Mar-

tian atmosphere (as seen in 84Kr/132Xe on the plot 
129Xe/132Xe vs 84Kr/132Xe [4]). For reviews on the com-

ponents see [5-7]. The fractionated Martian atmosphere 

is the subject of this abstract. 

Formation hypotheses:  There are four ways to 

explain elemental fractionation of atmospheric noble 

gases in the nakhlites: a) an internal (possibly crustal) 

gas reservoir, with its host rocks melted or assimilated 

into the meteorites’ parent magmas [8]; b) elementally 

fractionated Martian atmosphere in the rocks’ aqueous 

alteration minerals [9]; c) fractional adsorption of at-

mospheric noble gases onto mineral surfaces [10]; and 

d) incorporation of an unfractionated ancient Martian 

atmosphere, which was significantly different from 

today’s [11]; see also [7, 12]. Terrestrial samples and 

alteration experiments have demonstrated that ele-

mental noble gas fractionation in hot and cold desert 

environments is the rule rather than the exception [13-

15], and that elemental fractionation is replicable in the 

laboratory environment [16].  

Data sets:  In this study of nakhlites we use a lit-

erature compilation of existing noble gas data [7,12], 

PhD thesis [17] and unpublished data from MPI Mainz, 

unpublished data from LPL [18], unpublished data 

from University of Manchester [19-21], and data from 

our experimental study [22-26].  

Mainz data.  At MPI, we measured mineral sepa-

rates and bulk rock using an MAP215-50 noble gas 

mass spectrometer. All separates and bulk rocks 

showed a tendency towards 84Kr/132Xe ratios lower than 

expected from a mixture of Martian interior and un-

fractionated Martian atmosphere. The most fractionat-

ed 84Kr/132Xe ratios were observed in olivine and 

mesostasis (Fig. 1), in which the 1200°C T-step of 

‘Nakhla olivine (a)’ shows the highest 129Xe/132Xe 

(2.4±0.1) and the largest fractionation (84Kr/132Xe = 

0.9±0.9) from the unfractionated atmospheric 
84Kr/132Xe ratio (of 20.5). The 136Xe/132Xe ratio of this 

T-step also has Martian atmospheric signatures of 

0.373±0.011, indicating that the sample is not contami-

nated by terrestrial air (136Xe/132Xe= 0.3294±0.0004).  

Tucson data.  Governador Valadares (GV) and Na-

khla samples were analyzed in a VG5400. Most sam-

ples returned many T-steps with low 129Xe/132Xe, sug-

gesting air contamination. 136Xe/132Xe confirmed the 

assumption that low 129Xe/132Xe data are a good indica-

tion for terrestrial air contamination, but also demon-

strated that GV gases were not significantly affected by 

contamination. The highest 129Xe/132Xe ratio of 

1.884±0.016 was measured in the 1000°C T-step of 

GV bulk (Fig. 2). 

Manchester data. Samples were analyzed on the 

RELAX mass spectrometer [22,23]. The highest 
129Xe/132Xe of 2.282±0.061 was found in mesostasis, 

accompanied by a Martian atmospheric 129Xe/136Xe. 

Experimental data.  We tested the fluid hypothesis 

(b) by experimentally altering minerals analogous to 

those found in Martian meteorites [24-28]. The exper-

imental apparatus was a daisy chain of vessels, with 

CO2-headspace gas flow containing 2 vol.% Ar, 30 

ppm Kr, and 8 ppm Xe.  We calculated a generalized 

solution to the differential equation for this daisy chain 

problem and found that the peak concentration of gas 

exiting the third vessel would be achieved after 50 min, 

while that exiting the 30th vessel would be realized 

after 700 min when each vessel is 250 mL and the vol-

umetric gas flow is 10 standard cm3/min. This has, 

however, not been achieved for the reason of limited 

gas throughput (i.e., excess unfractionated gas mixture) 

compared to the system size, which in addition to the 

experimental complexities also shows the difficulties 

we face when investigating natural systems. However, 
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comparing the elementally fractionated gas signature 

measured in olivine from the first vessel 

(84Kr/132Xe=1.77±0.11; 1000 °C T-step) to the head-

space gas (84Kr/132Xe=7.9) shows considerable ele-

mental fractionation. 
 

 
Figure 1.  Olivine and mesostasis data measured at 

MPI Mainz [17] and unpublished data. 

 
Figure 2. Bulk and mineral separate data from 

Tucson [18]. 
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Figure 3. Bulk and mineral separate data from 

Manchester [19-21]. 

Summary and conclusions: Elemental fractiona-

tion occurs in all nakhlites with the highest fractiona-

tion factors (α=[(84Kr/132Xe)frac/(84Kr/132Xe)atm]) ob-

served in the 1200°C step of Nakhla olivine (MZ data, 

α = 0.04). Reported here is an α of 0.1 for the 1000 °C 

step from AZ corresponding to the highest 129Xe/132Xe 

ratio of this data set; however, we note that the 1400 °C 

step of GV from AZ has a similarly low α (0.03). For 

comparison, air noble gases dissolved in terrestrial 

water are fractionated with α ≈ 0.5 (depending on T 

and salinity), but much greater fractionation occurs 

upon incorporation into terrestrial alteration minerals 

[13-15] and in our experiments (α =0.22).  

The wide range of α in Martian, terrestrial, and ex-

perimental systems demonstrates that more experi-

mental and terrestrial analog data are required to un-

derstand the complexity of noble gas incorporation into 

secondary alteration minerals. Especially important 

experimental issues to address are the differences be-

tween a static and a dynamic flow regime – and the 

influence of mineral surface changes. The Martian sys-

tem has the added complexity that the Kr/Xe ratio at 

the time of incorporation is not known, thus the exper-

imental and terrestrial data are vital to narrow the num-

ber of possible hypotheses for the incorporation of 

fractionated Martian atmosphere into the nakhlites.  
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