1,584 research outputs found

    Compaction and dilation rate dependence of stresses in gas-fluidized beds

    Full text link
    A particle dynamics-based hybrid model, consisting of monodisperse spherical solid particles and volume-averaged gas hydrodynamics, is used to study traveling planar waves (one-dimensional traveling waves) of voids formed in gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging in a co-traveling frame, we compute solid phase continuum variables (local volume fraction, average velocity, stress tensor, and granular temperature) across the waves, and examine the relations among them. We probe the consistency between such computationally obtained relations and constitutive models in the kinetic theory for granular materials which are widely used in the two-fluid modeling approach to fluidized beds. We demonstrate that solid phase continuum variables exhibit appreciable ``path dependence'', which is not captured by the commonly used kinetic theory-based models. We show that this path dependence is associated with the large rates of dilation and compaction that occur in the wave. We also examine the relations among solid phase continuum variables in beds of cohesive particles, which yield the same path dependence. Our results both for beds of cohesive and non-cohesive particles suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect analysis added

    Effect of different cryoprotectants on the structural preservation of follicles in frozen zebu bovine (Bos indicus) ovarian tissue

    Get PDF
    Cryopreservation of ovarian tissue is a new and promising technique for germ-line storage. The objective of this study was to evaluate the effect of four cryoprotectants (at two concentrations each) on the preservation of zebu bovine preantral follicles after ovarian cryostorage. Strips of ovarian cortex were cryopreserved using glycerol (GLY; 10 or 20%), ethylene glycol (EG), propanediol (PROH) or dimethylsulphoxide (DMSO; 1.5 or 3 M). In addition, a toxicity test was performed for each cryoprotectant by exposing the ovarian tissue to them without freezing. Tissues were analyzed by histology and transmission electron microscopy. Ovarian tissue frozen in either concentration of DMSO or PROH or in 10% GLY retained a higher percentage of morphologically normal follicles (73–88%) than tissue frozen in 20% GLY or in either concentration of EG (16–52%). In the toxicity test, exposure of tissues to DMSO, PROH or GLY resulted in higher percentages of normal follicles (80–97%) than exposure to EG (49%). Electron microscopy revealed damage to the ultrastructure of follicles frozen in 10% GLY, while follicles cryopreserved in DMSO and PROH at either concentration exhibited normal ultrastructure. In conclusion, DMSO and PROH were the most effective cryoprotectants for zebu ovarian tissue, preserving the structural integrity of somatic and reproductive cells within the ovary

    Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson’s disease

    Get PDF
    Bradykinesia is a cardinal motor symptom in Parkinson's disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between β (13-30 Hz) and broadband γ (50-150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related β-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia.NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson's disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia
    corecore