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SYNOPSIS

The 'need for accurate bolt calibration has come a,boutas a

result of the recent popularity of structural connections using

high strength bolts. For the purposes of this report bolt cali~

bration has been defined as the relating of internal bolt tension

to some other readily observed quantity; e.g .. , bolt elongation,

torque, or turn of the nut. Information contained in this report

was compiled largely from control tests conducted at Lehigh

University in connection ,with the Large Bolted Joints Project.

All bolts used in these investigations were ASTMA-325. This report

is intended to reviewayailable bolt calibration procedures, to

discuss fully the procedure 'used at Lehigh, and to present infor

ntJitionan the turn-of-nutmethod for installing high ,strength

bolts.
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I. INTRODUCTION

1.1 General

In structural joints connected with high strength bolts it is

generally assumed that working loads are resisted by frictional

forces acting on the faying surfaces of the connected material. These

forces, in turn, are created by the internal tension induced in t~e

bolt as the nut is tightened against the material. According to the

classical theory of static friction, the value of these frictional

forces depends on two things: the coefficient of static friction and

the normal force. This normal force corresponds to the internal ten-

sion or "clamping" force of the individual bolts which go to~e

up a bolted connection.

When a bolt is tightened in .an unloaded joint, it possesses a

specific internal tension. As load is applied to the joint, however,

this internal tension changes because of bolt deformation and because

of changes in the grip length as the gripped material deforms under

load. Thus, if one wishes to evaluate the slip characteristics

ofa bolted connect,ton" he first must know ,the initial clamping

fo:rce (Ti ) exerted by each bolt in tlw pattern. Assuming that this

information. has been recorded, there still remains the problem of

knowing the static coefficient of friction between the connected

plies. One could, by experiment, evaluate a nominal coeffic~ent of

n x-r'i

on the joint at slip;

following manner.

Ps
~nom.

Ps
= Kslip = V =

In this exp..ress ionl Ps is the external load

friction of a joint in single shear in the

n is the number of bolts in the pattern;Ti is the weighted value of

Ti' the initial clamping force.
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If bolts are tightened into the elastic-plastic range where

the tension-elongation curve is relatively flat, then:

Ti(avg.)

In this case, Ti(avg.) is the value read from the tension-elongation

curve by entering with eavg.and reading off the corresponding bolt

tension. Therefore:

= . Ps
n x Ti(avg.)

(1)

However, due to the change in intefnal tension as external load

is applied to the joint, this coefficient of friction is by no means

the exact 'coefficient. If the exact coefficient of friction is desired,

o~e must know the history of the bolt tension SO that the clamping

force at the instant of slip is known. In this case,

Ps

~ Ts

,,'here Ts is the bolt tension at the instant of slip. This cannot be

simplified in the .manner of Eq. (1) because, in bolted joints, some

bolts relax more under external load than others, depending on their

location in the joint.

(2)

It is evident then that there may be some variation in reporting

co~£ficients of friction depending on when and how the internal

tension. measurements are made. Because of the difficulties in devising

equipment that can record .a11 bolt tensions during the life of a test

joint, investigators have generally reported the coefficients based on
'<.

the rather easily determined initial clamping force. Such coeffi.cients

have been called. Happarent coefficient of friction'.', "nominal coefficient

of friction",'and "slj.p coefficient ll
, in.orderto indicate their

f:l..ctit..Lous nature. The latter expression, slip coefficient, is probably



the b~~t one .because ihe others, through shoddy usage, can easily

he contracted to "coefficient of friction".

Having dismissed the question of when to measure bolt tension

the question of how to measure it still remains.

1.2 Bolt Calibration Relationships

It is by means of a bolt calibration curve that the tension

in bolts installed in structural joints cap be estimated once the

readily ob'served quantity is measured. There are a number of dif

ferent quantities to which the internal tension may be related.

a) Internal Tensionvs. Torque

b) Internal Tension vs. Elongation

c) Internal Tension vs. SR-4 Strain Gage Output

d) Internal Tension vs. Load Cell Output

Each method presents its own advantages and disadvantages.

Tension vs. Torque

Since turning the nut of a bolt against the resistance of the

gripped material induces an internal tension in a bolt, one could

use hand torque wrench readings as an indication of the tension in

the bolt. As early as 1930, C. Batho and E. H. Bateman(l)condtlcted

studies to determine the amount of torque required fOT a given factor

of safety against slip. They concluded that the amount of torque

required would increase as the cube of the diameter. They also reported

that the bolt is more highly stressed during the tightening 'process

than it is after the wrench has been taken off.

In 1954, Munse, Wright, and Newmark(2) offered a simple relationship

for determining the amount of torque required to induce a given tension

in a bolt.
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TORQUE = KPD

D is the nominal bolt diameter; P is the bolt tension in pounds

and corresponds to Ti of this report. K is a dimensionless factor

which depends on the material and the condition of the surface of

the threads, nuts, and washers. It may range from approximately

0.18 to 0.29 for bolts tested in the as-received condition. A fair

approximation .of the torque may be obtained by use of K = 0.20.

From a practical standpoint, this relationship between the torque

indicator on a manual torque wrench and internal tension indu.ced in a

b(jlt is erratic and results in a wide spread of tension values. Other

experimenters(3) point out that a torque criterion is not the most

efficient way of guaranteeing the preload. Furthermore, the factor of

safety against stressing the bolt to its ultimate load during the

tightening operation is also quite small when a torque control is

used. Nevertheless in the 1954 specification of the Research Council

on Riveted and Bolted .Structural Joints(4)a table of equivalent torques

is listed as a guide to proper bolt tensions.

As other bolt calibration procedures ate discussed, it will become

evident that a torque criterion is best suited for inspection purposes

even th~ugh it may not be the best method for control of original bolt

tightening.

Tension vs. Elongation

A tension-elongation relationship has be'en used by many investi

gators. The method. consists' of stretching the bolt in some way and

Ineas·uring fhe resulting change in length with an extensometer type

measuring device. In 1954, Hechtman,(5) while investigating the slip
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of joints under static load calibrated each bolt used in the tests

at its exact grip to obtain the relationship between directly applied

bolt tension and elongation. At the University of Illinois, Petersen

and Munse(6) 'used this elongation relationship in their tests on

,bolted connections .

With properly designed instruments, accurate elongation readings

are not difficult to obtain. The extensometer must be capable of

indicating changes of .0001" in order to be successful. ·As known loads

are applied by a loading device, corresponding elongations can be

rec·:>rded to, ultimate load and beyond. This is quite a simple laboratory

procedure.

In the field, however, it would not be feasible to measure the

. zero length of each bolt and, even ,more difficult, the final length of

the installed bolt. Since the conrect internal tension is a function

of the change in length of a bolt, this tensio.n-elongation relationship

has no practical field application.

tension v~. SR~4 Str,ainGage Output

Another menhod for calibrating bolts is to mount SR-4 type strain

gages OIl the bolt. As load is applied to the bolt by some means, the

material strains are picked up by the gages. G. A. Maney(7) used this

scheme mounting the gages diagonally on the bolt barrel to measure. . "

normal tensile and torsional shearing unit stress. He concluded that

befor€l a bolt is 'twisted off or the threads are stripped, the metal

of the bolt is. stressed in tension beyond the proportio.nallimit. When

the axial stretch of the threaded portion approaches its ultimate value,

the threads of the elongated bolt no longer fit the threads of the nut
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.and tremendous frictional resistance develops. This binding of the

threads then causes either thread stripping or shear failure in the

bolt.

In another article(S) Maney describes how SR-4 gages were mounted

on lines 45 degrees to the bolt axis to produce readings ·ofaxial load

in the bolt. Thebol ts were tightened with manual torque wrenches; so

that torque-tension relationships were finally obtained from the primary

tension SR..4 gage output relationships. Once this latter relationship

has been successfully established, any desired prestress can be placed

in a bolt of the same lot by h&ld torquing or direct pulling until the

required sttain increment is attained.

Tension-elongation readings with SR·4 gages mounted 120 degrees

apart on the bolt shank were checked by Petersen and Munse.(6) The

lead wires were passed through small holes drilled in the head of each

bolt. For bolts with strain gages they found it necessary to drill

the holes in th,e connected material 3/16" larger than the nominal bolt

diameter to accommodate the gages. These preliminary precautioD$ do

not affect laboratory work, but are impractical for erectors and

fabricators. It should also be noted that the strains in the threaded

porti.onwithin the grip area will be greater than those indicated by

the output of SR·4 gages .mounted on the shank of the bolt since the

shank remains elastic throughout most of the loading of a bolt. Also,

SR-4 type gages are limited since they are generally ineffective should

the shank become inelastic.

In summary, then, this method of calibration is satisfactory for

some laboratory work. It does not, however, use the gages as effectively

as possible.
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Tensionvs.Load C$ll Output

A load cell is a cylindrical piece of st.eel into which t;he bolt to

be calibrated is inserted. SR...4 type gages are mounted on the outside

of the load cell rat4er than on the bolt shank. R.L. Sanks(9) describes

a load cell designed for use at the University of Utah. This cell was

very satisfactory in overcoming errors of creep and lack of uniformity

in .materials and heat treatment" Si.milar load cells have 'been used at

the University of Illinois .fourst-rain:'gage.' Y('-sette~ were located'

at 90 degrees around the outside shell. One disadvantage of the load

cell is that separate load cells must be used for each bolt size. Also,

if one tries to use a load cellon a bolt i.na connection, the bolt

must necessarily be ltonger than standard by the length of the load cell.

On the other hand, its accuracy is very good.

After study,ing and considering .each method of bolt calibration,

it was agreed that the internal tension-elongation relationship best

suited the calibration needs at Lehigh. The number of bolts to be

calibrated was quite large in view of the oyer-all plans of the Large

Bolted JQjmts Project whi.ch includes the use of bolts of numerous lengths

and diameters. Th~ need, therefore, was for a direct·and simple procedure

for accurate calibratiop.. The testing equipJPentand instruments had

to be long-range items which could dependably produce similar results

over a period of years. Since the turn-of":nut procedure(lO)was used

in bolting up these joints, continuous readings during the tightening

process were not necessary; therefore, th~ tension-elongation relatio~

ship was actually best suited for calibration and, subsequently, for

determining changes in len.gth .and 'the resulti.ng tension .ofeachbolt

ina large joint.
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1.3 Methods of Inducing Tension

There are two ways of inducing tension in.a bolt. Since the

method of inducing the bolt tension has a marked effect on the tension-

elongation relationship, these methods will be discussed~

To induce an internal tension in a bolt, it is necessary to stretch

'the bolt insoxneway. This can be accomplished by subjecting the .bolt

to a .direct axial load (direct tension) or, more realistically., to cause

the .holt to elongate by turning'.the nut against the resistance of gripped

material (t0rRued). 'This latter method more closely simulates the

actual field condition .where ,the bolts are usually tightened with a

ppeumatic impC'i.ct wrench. It has been reported previously that tensions

induced by this method are ultimately lower than tensions induced by

a direct axid pull on, the bolt, H. O. Hill, (ll)reports that when bolts

(:.15% to .24% carbon) were pulled to failure by tightening the nut, the

ultimate strengths in tension were reduced to about 68% to 75% .of t;heir

.values in pure tension.

The direct tension method, on ,the other hand, ,is better suited for

laboratory wdrk. For this reason, the ASTM specification governing A 325

bolts stipulates the direct tension type of test. In sunnnary, then,

while torqued calibration hest simulates actual conditions which would

be encountered in bolts installed in the field, the direct tension

method is best suited to laboratory and control testing. Both prqcedures
'0'

have been investigated in the tests conducted at Lehigh.
, "

1.4 Seop!,!'

Test results of the' work carr,ied out at Lehigh were complete to
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the point that the following observations were possible:

(1) The effects of torqued calibration and direct tension

calibration procedures on the tension-elongation

relationship were compared for three commonly used bolt

sizes, 7/8", 1" and 1 1/8"~

From tb,e torqued calibration data, results of torquing by

-9

~5 degree rotation increments were compared with the more

realistic conti.nuous torquing method. This particular 'com

parison was designed to indicate whether it was necessary

to obtain a complete curve to check tensions and elongations

while also affording an opportunity to gather useful infor

mation on th~ turn-of-nut method.

(3) The advisability of re-using high strength bolts which

had been. previously installed in a connection according to

the turn-of-nut procedure was also included in these

observations .-

(4) Finally, the effect of grip length as well as thread

length in the gri.p area was indicated in the .data collected

in this study.
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2. MATERIAL.AND EQUIPMENT

2.1 Bolt Properties

All bolts used in the bolt calibration .work at Lehigh were ASTM

A·,325 high strength bolts with quenched and tempered washers and heavy

semi-finished qexagon nuts. The bolts were furnished by the Lebanon

Plant of Bethlehem Steel Company and included 7/811
, I", 1 1/8" diameters.

The bolts ranged in length from 5 1/2 inches to 8 1/2 inches under head

and were tested at grips of 4", 4 3/4".,. 5 1/4", 6" and 6 3/4". Most

test bolts had the standard length of thread; however, a few full

threaded and. other non-standard bolts were tested.

2.2 Preparation of Test Bolts

The first step in the preparation of test bolts consisted of identi

fying each bolt. ·A lot designation .and a bolt number were stamped on

the head and shank ends. In this manner each bolt of the 10twas

positively identified.

A second and most important preliminary operation was center

drilling holes in the center of the head and shank ends to accommodate

.the points of the C-frameextensometer. The center drilling was done

with .a combined drill and countersink, type 217, so that the dep,thof

the countersunk portion was between 1/32" and 1/16". No attempt was

made to provide each bolt ina certain lot with a constant length .under

head since one, needo.nly he concerned with change mlength to determine

theelongation.ofa bolt. For each bolt, however, these center-drilled

holes provided a constant point of contact with theextensometer tips

thus removing a major source of error. The included angle of the counter

sunk portion of the center-drilled hole was greater than the included
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angle oftheextensometer points. (Fig. 1) In this manner the point of

.contact between the ,bolt and the tips of ,the measuring. device was the

inside edges of thec'ountersink and not the bottom of the hole. This

provided a protected measuring surface which could not be damaged

during the impact bolting procedure.

2..3 Description of Equipment Used

The equipment required to establish the internal tension-

elongation relationship for both direct tension and tprqued calibration

is described briefly.

In the direct tension phase of this study, a 300k hydraulic universal

testing machine was used to induce the internal tension in the bolt. In

.order to use the testing machine special tension grips (Fig. 2) were

needed. These were designed for lO,ads up to l20k with the center holes

large enough for testing 1 1/8" bolts. Bushings shown in front of the

grips were designed to modify this center hole to accommodate 1" and

7/8" diameter bolts with the usual clearance of 1/16".

The Skidmore-Wilhelm bolt calibrator(12) was used to measure internal

tension in the torqued calibration series of tests. It is a commercial

. device manufactured by the Skidmore-Wilhelm Manufacturing Company and is

commonly used to ,adjust impact wrenches at'::the,;erection site. Inactual

field procedure a bolt is inserted in the device, being held in place by

changeable bushings and plates so that one machine .can be used to ~J\lst

wrenches on a: number of different bolt sizes. Tightening the nut trans-

.mits pressure through the hydraulic load cell to a calibrated gage indi~

eating bolt tension in pounds. By obs~rving this gage as a bolt is
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being, torqued i.l1thed~yice~ the operator can adjust the air pressure

or torsion bar conttolsothatthe wrench stalls as the bolt is torqued

to any desired tens~on.

, When the turn-of-nnt method is uSl;>,d to install bolts, however, the

Skidmore-Wilhelm.device is ~o longer necess~yexcept for calibrating

manual torque ,wrenches u;:;ed for inspection purposes.

The particular devi.c.~ used. had been modified so that bolts which

had been torqued to various levels of prestress could be jacked

statically to failure by a. hydraulic pump connecteid to the pressure

cell of the Skidmore-Wilhel.m. Figure 3 shows the calibrator with the

pressure, hose leading from it to the hydraulic pump. Connections were

designed so that this modification in no way impaired the operation

of the device during standard operation.

In o.rder to provide'the necessary grips; solid thick washers

were machined to "pack out" the Skidmore-Wilhelm. To accommodate the

C-frame extensometeruse,d to measure elongation (Fig. 4), the calibrator

was used in the horizontal position which is contrary to usual field

procedure. Accuracy of readings was insured by the calibration of the

d~vice in,a 120k testing machine before and after testing (Fig. 5).

T!:lsting machine load was plotted against Skidmore-Wilhelm load. From

the resulting calibration curve it can be seen ,that the Skidmore

~U.lhelm load was approximately 3 kips lower than the testing machine

loa.d at any point on the cut'v'e. The curve was established by continuous

loading; points on it were su])sta.n.tiatedby rapi.d loading to simulate

what happens when the nut is tightened to one-half turn irl approx~tely

6 seconds.
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Figure 6 shows the extensometer used in the tests at Lehigh.

Measurements were obtained from the dial gage which was capable of

indicating changes in length of .0001". As stated previously, the

tip of the dial plunger was made sO that the point would not rest on

the bottom of the ce.nf:er drilled holes. The pointed tip at the other

end of the frame was threaded and provided with a knurled lock ring

so that it could accoImIlodate a minimum tip to tip length of 5 1/2"

and a maximum length of 9 1/4". In addition, a counterweight was

attached so that the instrument would balance in the vertical position

when mounted on a bolt. In measuring initial and final lengths of

bolts readings were considered acceptable when three consecutive trials

agreed within .0002".

The impact wrenches used were Chicago Pneumatic 610 and Chicago

""Pneumatic 612. The larger wrench, capable of .exerting more energy,

was used to torque 111 and 1 1/8" bolts. Hypodermic pressure gages

were used to check the air pressure in the line at the wrench.
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3. DESCRIPl'ION .OFTESTS

3.1 Direct Tension Calipration

Since all the bolt calibration .work done at Lehigh has been in

the form of control tests for the Large Bolted Joints Project, all

bolts were tested .with grip distances corresponding to those of the

large joints. Single bolts .were pulled intension in a 300k testing

machine while elongations were read using the C-frame extensometer.

Figure 7 is a typical view of a bolt as it .was being tests.

The procedure for obtaining a direct tension vs. elongation

curve was as follows: The bolt to be calibrated was selected and

center drilled. It was then inserted in tthe special tension grips in

the testing machine and the postion of the testing machine heads set so

that at the required grip the nut .was only finger tight and the bolt was

unstressed. Ze-ro readings of elongation .were taken ,with no load on the

bolt. Load was then applied to the specimen in five kip increments to

the specification value of minimum elastic proof load. At this point

load was removed in increments to zero. The bolt was then .measured a

second time at zero ~oad to insure that the permanent elongation did

not exceed the specification maximum of .0005 inches. Having checked

the minimum elastic proof load requirement, testing was resumed in

similar increments of load.

This method provides corresponding load and elongation readings all

the way to rupture. Ho.wever, as the curve becomes relatively flat, it

is generally advisable to change from· a load increment criterion to an

elongation increment criterion. This precedure was used to establish the

tension-elongation curve in Fig. 8. While load increments were used,
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the extensometer was left on the bolt, but when higher loads were reached,

it was removed during loading and replaced after the load had been allowed

to stabil.ize. When a desired elongation was reached the loading valve

on the testing machine was clossd. A slight drop in load was noticed

after the valve was closed. This dropping of load was to be expected

and can be attributed to leakage in the hydraulic system of the testing

machine as well as to stress re.laxation in the bolt.

3.2 Torqued Calibration

The primary objective of this series of tests was to ~stablish

tension-elongation relation.ships caused by turning the nut rather than

by pulling the bolt inditect tension. Curves of tension vs. elongation

were established for 7/811
, 1" an.d 1 1/8" diameter bolts of various lots.

Initial elongations were measured with. the extensometer at a snugging

load of 8k on the bolt. This loa~ was chosen to simulate the "snug"

position of the turn-of-nut method. An initial load of 5k was set on

the Skidmore-Wilhelm gage, but the 3k correction factor deteiminedfrom

the ca1ibratinn curve of the Skidmore-Wilhelm caused the actual tension

in .the bolt to be 8k . l~is relatively small amount of tension was

.induced with a spud wrench. Using an impact wrench, the nut was rotated

in 45 degree increments. Load and elongation readings were recorded at

each increment ~nti1 failure occurred or until it was felt that failure

was imminent. At this time the nut was removed and the final length of

the bolt was measured.

S~oond1y, there was a question as to how a bolt which was elongated

by continuous torquing would compare with the curve established by

45 degree increments of turn. An impact wrench was again used to
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contin~ously turn the nut a predetermined rotation increment. Rotation

increments of 1/2 turn, 1 turn and 1 1/2 turn were chosen. This procedure

also served the dual purpose of checking the effectiveness of the turn

of-nut method in achieving specified boltte,1':I,~i,'(jn$' 'as wei1 as Comparing

tl?e uniformity of tensions in a number of bolts.

3.3 Re-use of High Strength Bolts

A third portion .of the torque cali.bration program was designed to

investigate the possibility of re-using high strength bolts which had

been previously tightened according to t~ turn-of-nut method. Fir!:>t,

a 7/811 .diameter bolt was torqued in 45 degree increments of rotation

from a snugging load (Ts ) of 8k . Load and elongation readings were taken

at each increment and represent one point on the graph. After being

tightened one-half turn from the snug position, the rotation of the nut

was reversed and load removed to simulate the removal of a used bolt.

After all load had been removed, the snugging load was re-applied and

the nut was. once more rO.tated through one-half turn. In this manner,

the same bolt was torqued to one-half turn from the snug position a

total of seven times whereupon rotation was continued to failure. Load

and elongation readings were recorded through out the entire test

furnishing a c'bmplete test histo~y.

This same general procedure was used to test two more bolts frbm

the same lot except that, in these tests, one complete turn of nut was

used rather than one-half. The first of these two bolts was ~orqued

to one full turn only once while, for the second, the load-unload .

sequence was repeated until rupture occurred. Again, a complete history

of each test was recorded.
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4. TEST RESULTS

4.1 General

A total of 110 bolts were calibrated. These represent 13

different lots and three different diameters. The greatest pontion

of the work was conducted wit.h 7/8" bolts. Most of the bolts were

close to the minimum strength specified by ASTM-A 325. Bolts of the

Q-W lots inclusive were actually from the same lot insofar as steel

and heat treatment were concen1.ed, but they were given different letter

designations because of the different le~gths of bolt and of thread.

The Q-W bolts had cut threads while all other bolts had the standard

rolled thread.

4.2 Direct Tension Calibration

Since three sizes of bolts, 7/8", 1" and 1 1/8", were tested in

.each phase of the direct tension tests, a portion of this discussion

~l1ill be devoted to each particular size. Figure 9 is a table showing

the results of the entire bolt calibr:ation study and will serve as a

reference for this entire discussion.

Bolts from ten different lots of 7/8" bolts were tested indirect

tension. Figure 10 shows the average tension-elongation curve for five

of ~he B-lot of bolts along with average curves for the A~lot and

G-lot. It is clearly evident that the B-lot of 7/8" bolts are very

nearly minimum strength (102.16% of specification minimum ultimate).

Results from these five tests were quite uniform so that the average

critical values given here may be termed representative of each bolt

in lot B. The average ultimate load was 54.3k , and rupture occurred

kat 45.75 .
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Eight Z-lot bolts were tested in direct tension. The average

ultimate load was 60.38k while the average rupture load was 49k .

Rupture occurred at anelongp.ti.on of approximately 0.24". Figure 11

shows three types of·directtension failures of Z-lot bolts. These types

of failures may be termed typical of all 7/8" bolts tested in direct

tension.

Another lot of 7/8" bolts tested in direct tension was the D-lot.

These bolts were 106.7% of the specification minimum ultimate. Ultimate

load was 56.7k and the rupture load was 45.8k . Approximate elongation

of rupt.ure was .25 inches.

Three of these lots (Q, Rand S) cannot be called standard since

they were made with greater than standard thread length. These lots

were, however, from .the same heat and were ordered especially to detel1

mine the .effect of thread length on the tension-elongation characteristics.

All three lots were 5 1/2" under head. Tension-elongation curves of these

three lots were directly comparable and afford the opportunity to view

graphically this effect of t.he length of thread in the grip area. (Fig. 12)

At any point on this composi.te graph, the elongation at any load varies

in some relationship to the length of thread in the grip area. Likewise,

the load attained at anyone elongation is related inversely to the

length of thread. Then, too, the elongation at which the full threaded

bolts (S-Lot) ruptured was approximately twice that of the bolt with

the 2 1/411 thread length (Q-Lot). Figure 13 is a photo of one bolt from

aachof the lots marked Q, Rand S. It is important to notice here that

most of the necking occurred in the threaded portion.
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Bolt lots desig~ated T, U, V and W have similar material properties

to those of the Q, R and S lots. Tests of these bolts were included

in this study to ser-illa a dual purpose ~

1) As control tests for large bol,ted joints in which these lots
of bolts were to be used as fasteners.

2) To determine the effect of grip length on the tension-elongation
relationship.

These bolts ranged from 6 1/2" to 8 1/2" under head. The important point

broughtto li&ht by this series of tests was that there was no apparent

decrease in ultimate load carryi.ng capacity and also no ,definite trend

in elongations at rupture or at attainment of ultimate load (Fig. 14).

At specification min~ proof load, however, the elongations are in

direct relation to the grip length~ The bolts of lots Q through T were

approx~ately 102~5% of specificati.on minimum ultimate load making

them very nearly mininUim streng~h bolts.

ASTM specifications list proof load for 1" bolts at 47.25k while

ultimate load must be at least 69.7k . Again, two lots- of bolts were

tested. The first of these was the Y-Iot from which five bolts were

selected. 1~e average ultimate load of these five specimens was 73~Ok

while average rupture load was 62.5k . Each bolt passed the perman,ent

elongation at proof load check. Rupture occurred at an elongation of

.38 inches.

The second lot of 1" bolts tested was designated tlw A;'-lot. It

was 106.35% of specification minimum ultimate strength. Average rup-

ture load was 63.6k occurring at an elongation of approximately .33

inches. Figure 15 and Fig. 16 are ph,otos of typical 1" tensile failures

and Fig. 10 shows the, average tension-elongation curve of the A-lot.
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Results of direct tension calibration of the 1 1/8" bolts closely

followed the general pattern of the 7/8" and I" bolts. Ultimate load

was 9l.2k1 which is 113.85% .of the specification minimum ultimate.

Rupture occurred at a load of 76.6k ~d an elongation of .?O inches.

The average tension-elongation curve for the G-lot can be seen in Fig.10.

4.3 Torqued Calibration

As was the case in t.he d.irect tension calibration tests, thre,e sizes

of bolts were tested in this phase of the program.

ranged f~om lengths of 5 1/2" to 8 1/2" under head.

Again, these bolts

Pnly a limited

number of bolts were tested to rupture for fear of causing damage to

the Skidmore-Wilhelm 'calibrating device. Figure 17 is a tension

elongation curve of three of the lots of bolts used in the torqued

calibration phase. (S~e Fig. 9 for tabulation of results of torqued

calibration phase.)

Three bolts were selected from the B-lot to be tested by tightening

the nut against the resistance of the packing washers and the Skidmore

Wilhelm. In this case the average ultimate load was 15.8% less than

.the direct tension ultimate (Fi.g. 9). Elongation at failure was

0.19 inches, also less than in the dir.eet tension tests.

Tests of twelveZ-lot bolts revealed an average ultimate load of

55.0k ·which is 8.87% less than the direct tension ultimate. Rupture

load was uncertain sinc:.e the tests were stopped short of failure.

Judging from previous tests, however, a fair approximation of the

rupture load would be 42.Sk at an elongation of .19 inches. Bolts

torqued continuously to 1/2, 1 and 1. 1/2 turns revealed bolt tensions

and elongations similar to those of bolts which were torqued to the

various turns of rwt by 45 degree increments.
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In tests of three D-lot bolts, an average ultimate load of 5l.8k

was recorded; the reduction in strength h'om direct tension ultimate

was approximately 8%.

As before, lots Q, Rand S were tested in this phase of the program

to compile furtJ:1,e;r data on the effect of thread length in the grip area.

Figure 18 is the resulting set of curves showing this effect. The

increased thread length did increase the elongation at any given load;

however, it did not tend to decrease tb.e ultimate capacity of the bolts

to any marked degree.. TheQ, Rand S lots were respectively 94%,

S8.5%and 88% of specification minimum ultimate load.

In order to study the effect of grip length on the torqued tension-

elongation curve, bolts of the T~ U, V and W lots were tested. As was

the. case in direct: tenslon c.al.i,bration, t.b.ere was no apparent effect on

the ult~ate strength of the bolts or on tb£ elongation characteristics

beyorid specification minimum proof load.

Three A-lot bolts were included in the 1" torqued calibration tests •

.'l'he average ultimate load was 56.0k whi.le the rupture load was uncertain

sInce none of the A-lot bolts were tested to failure.

Bolts from the Y-lot were not i.n.cluded in these tests.

Two G-lot bolts were tested. After the nut of the second bolt

~d been ~ightened through 1 1/4 turns the dowel pin in the Skidmore-

Wilhelm calibra.ting device sheared allowing the piston to turn with the

nut. It was decide.d a.t that point tha.t it would be unsafe tocontiD.ue
.

testing these larger bolts in the calibrator. Prior to shearing of

the dowel pin', the results ofth.e second trial followed closely the
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results ob~ained from the first 1 1/8" bolt. Both tests followed the

general trend established in the testing of 7/8 11 and 1" bolts by turning

thenut. Ultimate load was approximately 13k and· final elongations

were approxima.ted to be about .15 inches.

4.4 Load-Un10ad~Re10adTests

Three 7/8" bolts from the Z-lot welre chosen for t,hese tests since

the torqued calibration data for the Z-lot was most complete. Figure

19 shows a plot of tension vs. elongation for the load-un10ad-re10ad

test in which load was applied and re-app1ied through one-half turns

of-the-nut. The ultimate strength of the bolt was not effected by the

10ad-un10ad-re1oad procedure. Failure occurred by thread stripping

after the nut had been turned through 1 7/8 turns in the sixth reloading

sequence. This compares with rupture at 2 1/4 turns of the nut for a

bolt which had, been torqued directly to rupture in 45 degree increments

of turn.

This general procedure was repeated using one full turn of the nut

from the snug position rather than one-half turn. Again, ultimate

capacity was not effected; however, in this case rupture occurred

after only 3/8 turn in the third reloading sequence (Fig. 20). A

second bolt was unloaded only once and then reloaded to failure. RUp~

ture occurred af~er1 7/8 turns of the second loading sequence. In

all the torqued calibration work turns of the nut were recorded from

a snugging load of B.Ok boit tension and not from a finger tight posi

tion.as is recommended in the 1954 specification .of the Research

Council on Riveted and Bolted Structural Joints.
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5. ANALYStS OF RESULTS

The following discussions are ,based on the results of bolt

calibration work don~at Lehigh Universi.ty.

5.1 Direct Tensionvs. Torquedcalibratipn

Figure 21 is a typical curve comparing t.he lOad-elongation pro

perties of direct Itensionand torqued calibration' for one lot of bolts,

the B-lot. In this, and all other lots of standard thread length bolts"

the method used to induce the internal tension in the bolt had no effect

on the tension-elongati.on relat.ionshi.p in the elastic raIlge. Beyond

the proportional l.imit;l however, -!1 difference in ultimate strength is

apparent. This difference ranged from 5% to 25%, with an ayerage decrease

from direct tension.. ultimate of approximately 11%. It is also interesting

to note the difference in total elongation which occurs when bolts are

torqued to failure. The elongation at rupture for bolts of the torqued

calibration tests were from 20% to 60% less than the rupture elongations

recorded during direct· tension calibration.·

Thus the turning of the nut reduces the ove~~all performance of the

fastener iucomparisonwith .One which is loaded in direct tension. The

reduced strength in tension results fn::>m the different stress condition

p~eseI'1t when the bolt is tensioned by turning the nut and in no way
•

indicates a deficiency au the part of the bolt. Frictional resistance

between th,e nut and bolt threads transforms some of the. applied energy

int.o torsional sAAar stress thus changing the tension-elongation relation..

ship.. Evidently, this frict,ional reshtance between the bolt and nut

threads becomes critical when the mate¥ial of th~ threaded portion of
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the bolt is stressed beyond the proportional limit and takes on plastic

deformations whic.h cause thread bi.wdi.ng. Below the proportional limit

thread deformations are small and the tension. elongation relationships

are the same for the two method of calibration.

5.2 Effect of Grip

Test results from thirty 7/8" bolt'S having grip lengths of from

.4 inches to 6 3/4 inches (lots Q, T, U, V, W), indicate that the

grip length has noappreci.a.blle effect on .the tension-elongation

characteristics of the bolts. These bolts had 1/2 to 3/4, inches of

thread in the grip. A close exam;inati.on of Fig. 14 at the elastic proof

load reveals that, while the bolt is still elastic the amount ofelong

ation is directly related to the length of grip. (The exact figures are

tabulated in Fig. 9). This is true for both direct tension and tor

qued calibration. As the tension is increased beyond proof load, the

threaded portion behaves plastically while the shank remains el~stic;

therefore, most of the additional elongation takes place in the threads.

This plastic deformati.on.: of the threaded portion beyond proof load

overshadows the relatively small elastic elongations which occur in

the bolt shank. For this reason the relationship between grip length

.and elongation no longer holds true with loads greater than proof load.

5.3 Effect of Thread Length

From the previous discussion, it would seem logical to assume that

since most of the elongation occurs i.n the threads, the length of thread

in the grip area will have a .marked effect on the tension~elongation

relationship. This is the case (Fig. 12 and 18). Notice in the photo

(Fig. 13) that in the case of the full-threaded bolt, necking is
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apparent 'through out the entire grip length; in the R-lot, which was

threaded through approximately half of the four-inch grip, one can see

distinctly that all appreciable necking has taken place in the threaded

portion only. Therefore, most of the elongation which, occurs as the

bolt is stretched beyond proof load takes place in the threads within

the grip. Further, a close examination of the 1954 specification

recommendation for choosing bolt length: reveals that this length of

thread in the grip area wi.ll not vary more than approximately 1/4".

From this fact it is evident that if bolt lengths are chosen in the

proper way, the length of thread in the grip area will be relatively

constant; therefore, the elongations which occur in any given grip will

also be approximately the same.

, 5.4 Evaluation of Turn-of-Nut Procedure

In standard erection precedures the bolt tension can be most

economically induced by the turn-of-nut method. The torqued caiibration

relationship, then, best simulates the actual condition of,:,;'b~l\~

installed in the field. Figure 22 is a curve constructedfrotn data

obtained by torquing several Z-lot bolts continuously to '1/2 ,turn,

1 turn, and 1 1/2 turns respectively from the "snug" postion,. These

points were plotted on the average torque calibration curve of the Z-lot,

obtained by 45 degree increments of turn, and the scatter of these points

was then represented by cross-hatched zones in order to present .~ better

idea of the area of the curve involved. Notice that the turn-of-nut

precedure of first drawing the plies into contact with the impact

wrench and then turning the nut one-half turn i~duces a tension in the

bolt greater than the specified minimum tension of 0.9 E.P L. In fact~

the tension induced by this method is approximately 30% greater than the

minimum.
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The one turn-of-nut zone falls at the ultimate strength of the

bolt. This zone is somewhat higher than would be a zone for one turn-of-

nut from a finger tight position, the. tightening procedur~ used by some

erectors.

Figure 23 is a bolt tension distribut:l..on chart plotted for six

bolted butt joints tested at Lehigh University.(13) Information gathered
(

in this calibration study was used to plot the average tension-elongation

curves. The bolt elongation. histograms below were plotted to,the same

abscissa as the load e·longat.ion curves to show bolt' tension distribution

throughout joints assembled using the 1/2 turn-of"nut method. 'It is

important to notice here that despite the apparent scatter in elongations,

little. difference in .bolt, tension is found when the elongations are

projected up to the c.ali.bration curve. 'I'hisis due to the fact that the

turn-of-nut method causes the bolt to deform beyond the elastic range into

the relatively flat elastic-plastic range. Therefore, a consid~rable

variation in elongations resl~lts in relatively smail variations in

induced tension or clamping force'. Slronar distribution charts plotted·

for other large joints in the Lehigh project reinforce these findings

and attest to the reliability of the turn-of-nut method.

According to a suggested procedure for the tum-of-nut method(10)

3/4 and 7/8 bolts used wi.th grip lengths of between five and ten inches

and l~ 1. l/B'a~ 1 1/4'bolts with eight to twelve inch grips should

receive 3/4 turns from the snug position rather than the customary 1/2

turn. This requirement is intended to insure, beyond a doubt, that

an adequate margin of safety against insufficient internal tension is

achieved. Figure 24 is a plot of per cent of minimum allowable internal
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tension va. g'r1p length in inches for a 7/8" bolt. Notice that a grip

of as large as 6 3/4" (tbe largest i.ncluded in this study) the internal

tension at one-half turn of the nut is still 125% of specification minimum.

Moreover, it was found that the av~rage p'ercentage'of specification

minimum bolt tension for all grips tested was 128%. For general interest

the same comparison was made at 3/4 turns-of-nut. In this case the

average internal tension for all grips was 143% of specification minimum

tension. Ultimate load, according to a similar comparison occurs at

approximately 157% of mi,ni.mum tension. These figures indicate that the

portion of the turn-of-nut method controlling the increased amount of

rotation for grip greater than 5" is quite conservative. All bolts

used in these comparisQns were from the same heat and exhibited similar

material properties. By the same token, they were minimum streng,th bolts

(102'.5% of specification ,minimum ultimate)., Then, too, the 1/2 turns

were recorded from a snugging tension of 8.0k . Actual measurements of

bolts in a structural joint after snugging, have exhibited internal

tensions in the neighborhood of lS.Ok. These facts illustrate the using

3/4 turn of the nut for 7/8" bolts with grips greater than 5" may be

a practice which is unnecessary. However tests of large joints have

shown no detrimental behavior dlle to this degree of tightening.

5.5 Slip Coefficient

The slip coefficient of a single lap joint has been ,defined as~

Ksup =
Ps,

n x T(avg.)
I

In section 1.1 it w~s stated that reported values of "coefficient of

friction" vary depending upon when the internal tension measurements

were taken and also on the procedures used for establishing the calibration
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relationships. Th~refore, if one uses slip coefficient rather' than

coefficient of friction, the only further qualification necessary

would be; to state whether a direct tension or torqued calibration curve

had been used to ,determine Ti(avg.).

5.6 Clamping Force

It has been pointed out previously that the torqued calibration

procedure simulates actua.l field conditions ln9re closely than the

direct tension procedure. Fi.gure 2.5 is a non-dimensional plot of induced

tension at any particular turn-of-nut (Ta ) divided by ultimate tension

(Tu ) VB. elongation at ~y particular turn-of-nut (ea) divided by elong-

ation at failure (ef). Values of ultimate tension and elongation at

rupture were taken from average torqued calibration curves for bolts of

the same lot. Data used to plot t:his curve was compiled from torqued

calibration tests of fciir different lots of bolts including 7/8", 1"

an,d 1 1/8" diameters. In the shaded portlnn of the curvecorrespon,ding

to one-half turn-of-nut,although the tension in the bolt is 90% of

ul'~t$, 1~6s than 1/5 of the totalelonga4ion has been utilized in

attaining this 90% of available clamping force. By a similar comparison)

one full turn of nut would induce maximum tension in a bolt while

using approximately half the total available elongation. Thus in

order to achieve a 10% increase in clamping force the factor of safety

against rupturing the bolt dUring tightening is reduced from 5 to 2 •
•

The clamping force at one-half turn-of-nut from the snug position

may be approximated in the following way. The average "reduction in

strength" due to torqued calibration (Fig. 20) is 10.7%. In addition,

the tension in a bolt at one-half turn-of-nutis approximately 90%, of
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the torqued ulti.mate which corresponds to a further decrease indirect

tension .ultimate of 8.23%. l'herefore, the clamplng force in a bolt

which is torqued one-half tur.'nafter snugglng can be approximated as

80% of the direct tension ultimate load.

5.7 Re-use of High Strength Bolts

Figure 19 shows the complete test history of a 7/8" A 325 bolt which was .

tested according to the loa,d-·unload-reload procedure .described in

Section 4.4. Load was applied a total of seven tim~s without bolt

failure although each subsequent loading tended to decrease the factor

of aafety against failure. In Figure 20 the same test procedure was

used except that load increments were established by full turns of

the nut rather than the specified one-half turn. In this case, the

factor of safety against fallure was greatly reduced since the bolt

failed after 3/8 tum-of-nut in the fourthl loading sequence. In view

of these few limited tests, it seems entirely safe to re-usehigh

strength bolts provided the stress history of the bolt is knowna~d

the installation well controlled by field inspection. The number of,

.times a bolt could be re-used would then depend on the factor of safety
r

required for the case tn question.
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6. CONCLUSIONS

The following conclusions are based on observations made from

test results of no high strength bolts having 7/8", 1" and 1 1/8"

diameters and varying from 5 1/2 to 8 1/2 inches under head.

1. When internal tensions are induced ina bolt by turning the

nut against the resistance of the gripped material, both

ultimate strength and potential elongation.are less than

would be obtained if the internal tension were induced

by pullin&the bolt in direct tension. Ultimate strengths

are approximately 11% less than direct tension ultimate

strengths, and the elongations at rupture are 20% to 60%

less than the elongations at rupture in direct· tension .cal-

ibration.

2. Grip length ~s no appreciable effect on the tension-elongation

characteristics of high strength bolts (Figs. 13, 23).

3. Most of the ~longation which occurs as bolts are tensioned
•

takes place in the threaded .portion within the grip. There-

fore, thread length in the grip area, and not grip length,

is chiefly responsible for increased elongations. (Figs. 11, 17)

4. The turn-of-nut method for installing high strength bolts
\

produces ad,equate and consistent bolt tensions. The three-

. quarter turn stipulation of the turn-of-nut method for 7/8"

bolts with grips greater than 5 inches is conser"a~~ve;

it is not, however, detrimental'to the performance of .bolts

installed according to this recommendation. (Figs 21, 22,

23 and 24)
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5. The clamping force in a bolt which has been properly

installed according to the turn-of-nut method can be

approximated as 80% of the direct tension ultimate

load. (Section 5.6)

6. It appears safe to re-use high strength bolts which had

previously been properly installed according to the turn

of-nut procedure as long as proper control is exercised

during the second installation. For erection purposes bolts

can be re-used as often as five times without reaching

ultimate and still have a factor of safety against rupture of

approximately 2. (Figs. 19, 20)
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7. APPENDIX

7.1 Definition of Terms

1.

2.

3.

4.

5.

6.

7.

Bolt Calibration- the relating of internal bolt tension to
some other readily observed quaIl,tity.

Direct Tension Calibration- theest.ablishing of a tension
elongation relation~slHp determined by pulling a single bolt
in direct tension at a precise grip.

Torqued Calibration- the establishing of a tension-elongation
relationship determi.ned by elongattng a single bolt by .turning
the nut against the resistance of the gripped material.

Initial Tension (Ti)- the tension or clamping force ina bolt
after a joint is completely bolted but under no external load.

Te,~~on at Slip (Ts)- The tension or clamping force in ,a bolt
when the joint is subjected to an external lo~d equal to the
slip load (Ps).

Snug- the expression used to describe the tightness of a bolt
before be.ginning the turn~of-nut. Snug is iIl,dicated by the
impact wrench when impacting begins.

Snugging TensiQn- the tensile load induced in.a bolt to
simulate the snug position.

Slip Coefficient (Ks )-8.

first major slip;
n is the number of

Ps where Ps is the load at .
n x Ti(avg)

Ti(avg) is the average bolt tension;
bolts in the pattern.

9, Zero Length- the length of the center drilled bolt .before
any-- internal tension is present.
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Fig. I Sketch of Properly Centerdrilled Bolt

Fig. 2 Tension Grips and Inserts



Fig. 3 Torqued Calibration of a Bolt in the
Skidmore-Wilhelm Device

Fig. 4 C-Frame Extensometer in Place,
Torqued Calibration
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RESULTS OF BOLT CALIBRATION
Units B-Lot D Z Q R S T U V W A y G

Size (nominal diameter) in. 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 1 I I 1/8
Grip Length in. 4 4 4 4 4 4 4.75 5.25 6 6.75 4 4 4
Thread Length in. 2 2 2 2 3.25 5.50 2.25 2.25 2.25 2.25 2.25 2.25 2.50
Length Under Head in. 5.50 5.50 5.50 5.50 5.50 5.50 6.50 7 7.50 8.50 5.50 5.50 6
Stress Areo sq. in. .462 .462 .462 .462 .462 .462 .462 .462 .462 .462 .606 .606 :763
Spec. Min. Proof Load kips 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1 47.3 47.3 565
Spec. Min. Ult. Load kips 53.2 53.2 53.2 53.2 53.2 53.2 53.2 53.2 53.2 53.2 69.7 69.7 80.1
Mill Report Ult. Load kips 54.2 54.1 59.5 55.9 55.9 55.9 56.1 56.1 56.1 56.1 73.5 74.2 90.0

DIRECT TENSION CALIBRATION

Number Tested 5 5 8 3 3 3 3 3 3 3 5 5 5
Ultimate Load kips 54.3 56.7 60.4 54.0 52.2 53.8 54.8 55.2 53.6 55.1 74.1 73.0 91.2
% of Spec. Min. Ult. Load 0/0 102.2 106.7 113.6 101.5 98.2 101.2 102.8 103.8 100.8 103.6 106.4 104.7 113.9
Rupture Load kips 45.8 45.8 49.0 42.5 35.0 43.3 45.3 46.7 45.9 46.3 63.6 62.5 76.6
Elong. at EPL in. .011 .009 .009 .011 .016 .020 .013 .014 .016 .018 .0/1 .011 .011
Elong. at Ult. Load in. .015 .128 .135 .16 .25 .38 .14 .17 .17 .163 .18 .22 .20
Elong. at Rupture Load

I

in. .31 .25 .242 .36 .44 .60 .35 .307 .333 .33 .38 .30.34

TORQUED CALIBRATION

Number Tested 3 6 20 4 3 3 3 3 3 3 3 2
Ultimate Load kips 45.2 51.8 55.0 50.0 47.0 46.2 52.0 51.5 50.0 51.5 56.0 73.0
% of Spec. Min. Ult. Load 0/0 85.0 97.5 103.4 94.0 88.5 88.0 97.8 96.8 94.0 96.8 80.3 91.1
Rupture Load kips 40.0 42.0 43.5 44.0 42.0 43.8 44D 44.5 43.5 44.0 47.0 66.0
Elong. ot EPL in. .011 .010 .010 .115 .027 .032 .015 .015 .017 .019 .016 DI2
Elong. at Ult. Load in. .015 .057 .069 .12 .19 .025 ./10 .15 .13 .14 .053 .080

Elong. at Rupture Load in. .16 .174 .19 .228 .325 .39 .206 .24 .258 .235 .120 .150
% Reduction in Strength from

% 16.7 8.6 8.9 7.4 9.9 14.1 5.1 6.7 6.7 6.6 24.4 20.0Direct Tension Ultimate

Fig. 9 Table of Test Results
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