4,007 research outputs found

    Effect of stoichiometry on oxygen incorporation in MgB2 thin films

    Full text link
    The amount of oxygen incorporated into MgB2 thin films upon exposure to atmospheric gasses is found to depend strongly on the material's stoichiometry. Rutherford backscattering spectroscopy was used to monitor changes in oxygen incorporation resulting from exposure to: (a) ambient atmosphere, (b) humid atmospheres, (c) anneals in air and (d) anneals in oxygen. The study investigated thin-film samples with compositions that were systematically varied from Mg0.9B2 to Mg1.1B2. A significant surface oxygen contamination was observed in all of these films. The oxygen content in the bulk of the film, on the other hand, increased significantly only in Mg rich films and in films exposed to humid atmospheres.Comment: 10 pages, 6 figures, 1 tabl

    The Reactivity of MgB2 with Common Substrate and Electronic Materials

    Full text link
    The reactivity of MgB2 with powdered forms of common substrate and electronic materials is reported. Reaction temperatures between 600 C and 800 C, encompassing the range commonly employed in thin-film fabrication, were studied. The materials tested for reactivity were ZrO2, yttria stabilized zirconia (YSZ), MgO, Al2O3, SiO2, SrTiO3, TiN, TaN, AlN, Si, and SiC. At 600 C, MgB2 reacted only with SiO2 and Si. At 800 C, however, reactions were observed for MgB2 with Al2O3, SiO2, Si, SiC, and SrTiO3. The Tc of MgB2 decreased in the reactions with SiC and Al2O3.Comment: 5 figure

    MgB2 tunnel junctions with native or thermal oxide barriers

    Full text link
    MgB2 tunnel junctions (MgB2/barrier/MgB2) were fabricated using a native oxide grown on the bottom MgB2 film as the tunnel barrier. Such barriers therefore survive the deposition of the second electrode at 300oC, even over junction areas of ~1 mm2. Studies of such junctions, and those of the type MgB2/native or thermal oxide/metal (Pb, Au, or Ag) show that tunnel barriers grown on MgB2 exhibit a wide range of barrier heights and widths.Comment: 9 pages, 3 figure

    Control system designs for the shuttle infrared telescope facility

    Get PDF
    The Shuttle Infrared Telescope Facility (SIRTF) image motion compensation system is described in detail and performance is analyzed with respect to system noise inputs, environmental disturbances, and error sources such as bending and feedforward scale factor. It is concluded that the SIRTF accuracy and stability requirements can be met with this design

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Effects of modifications to the space shuttle entry guidance and control systems

    Get PDF
    A nonlinear six degree of freedom entry simulation study was conducted to identify space shuttle guidance and control system software modifications which reduce the control system sensitivity to the guidance system sampling frequency. Several modifications which eliminated the control system sensitivity and associated control limit cycling were examined. The result of the modifications was a reduction in required reaction control system fuel

    Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    Get PDF
    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education

    Self-consistent modelling of the polar thermosphere and ionosphere to magnetospheric convection and precipitation (invited review)

    Get PDF
    It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap

    Development of the reentry flight dynamics simulator for evaluation of space shuttle orbiter entry systems

    Get PDF
    A nonlinear, six degree of freedom, digital computer simulation of a vehicle which has constant mass properties and whose attitudes are controlled by both aerodynamic surfaces and reaction control system thrusters was developed. A rotating, oblate Earth model was used to describe the gravitational forces which affect long duration Earth entry trajectories. The program is executed in a nonreal time mode or connected to a simulation cockpit to conduct piloted and autopilot studies. The program guidance and control software used by the space shuttle orbiter for its descent from approximately 121.9 km to touchdown on the runway
    corecore