

EFFECTS OF MODIFICATIONS

 TO THE SPACE SHUTTLE ENTRY GUIDANCE AND CONTROL SYSTEMSRichard W. Powell, Howard W. Stone,
and Lawrence F. Rowell
Langley Research Center
Hampton, Va. 23665
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1976

[^0]
EFFECTS OF MODIFICATIONS TO THE SPACE SHUTTLE ENTRY GUIDANCE AND CONTROL SYSTEMS

Richard W. Powell, Howard W. Stone, and Lawrence F. Rowell
Langley Research Center

SUMMARY

A study was conducted using a nonlinear six-degree-of-freedom digital simulator to identify modifications which would reduce the space shuttle orbiter control system sensitivity to guidance system sampling frequency and would eliminate limit cycling of the controls. Previous nonlinear three-degree-of-freedom trajectory analyses indicated that entry guidance requirements were satisfied with attitude commands issued at $2-s e c o n d$ intervals. Six-degree-of-freedom analyses of the control system response to commands with this long interval indicated that it resulted in limit cycling of the reaction controls and, consequently, required large increases in reaction control system fuel. A combination of control system software modifications (a "ramp" designed to smooth the step signals to the control system together with gain modifications in the yaw and the aileron control circuits) was identified that eliminated the limit cycling and the sensitivity to guidance sampling frequency. This combination resulted in a 64 -percent savings in reaction control system fuel during a nominal entry.

INTRODUCTION

A reusable Earth-to-orbit transportation system known as the space shuttle is being developed under contract to the National Aeronautics and Space Administration (NASA). The space shuttle is
to be capable of inserting payloads of up to 29500 kg (65000 lb) into a near-Earth orbit, retrieving payloads already in orbit, and landing with a payload of up to $14500 \mathrm{~kg}(32000 \mathrm{lb})$. The space shuttle consists of an orbiter, an external fuel tank, and two solid rocket boosters (SRB). The SRB's are to be recovered after launch for reuse. The external tank is designed for one use and is not recovered. The orbiter is to have the capability to reenter the atmosphere of the Earth, to fly up to 2040 km (1100 n . mi.) crossrange, and to land horizontally. A general description of the configuration and mission is given in reference 1.

The space shuttle orbiter can be automatically guided and controlled from entry to landing by onboard digital computers in conjunction with navigation, guidance, and flight control systems. The guidance system calculates the vehicle attitudes required to meet the targeting requirements without violating any in-flight constraints. The control system directs the aerodynamic surfaces (elevons, rudder, speed brake, and body flap) and the reaction control system (RCS) thrusters.

To maintain proper control, the control system is sampled at the minimum pulse width of the RCS thrusters, i.e., 0.04 second. However, it is not necessary to sample the guidance system so frequently, and from a computer burden standpoint, it is desirable to make the time between samples as long as possible. Previous three-degree-of-freedom nonlinear analyses of the entry have shown that a guidance sampling rate of once every 2.00 seconds is adequate to meet the targeting and in-flight constraints. However, six-degree-of-freedom simulations indicated that this lower frequency results in limit cycling in the RCS.

Four software modifications (developed in cooperation with E. E. Smith, Jr., and J. H. Suddath of the NASA Johnson Space Center, Houston, Texas) to the guidance and control systems are proposed to eliminate the limit cycling and accompanying fuel increase at the longer guidance intervals. This paper presents results of a study of the longer guidance intervals with the nominal systems and the effects of adding the proposed modifications.

SYMBOLS

Values are given in both $S I$ and U.S. Customary Units. The measurements were made in U.S. Customary Units. Symbols used in the appendixes are defined therein.

α	angle of attack, deg
α_{c}	commanded angle of attack sent to control system, deg
$\alpha_{c, n e w}$	commanded angle of attack from guidance system at latest sampling, deg
$\alpha_{c, o l d}$	commanded angle of attack from guidance system at previous sampling, deg
β	sideslip angle, deg
${ }^{\text {a }}$	aileron deflection angle, deg
$\delta \mathrm{a}, \mathrm{UD}$	commanded aileron deflection from up-down counter, deg
$\delta^{\text {BF }}$	body-flap deflection angle, deg
δ_{e}	elevator deflection angle, deg
δ^{r}	rudder deflection angle, deg
$\delta^{\delta} \mathrm{SB}$	speed-brake deflection angle, deg
θ	pitch angle about body axis, deg
ϕ	roll angle about body axis, deg
ϕ_{c}	commanded roll angle about body axis sent to control system, deg
${ }^{\prime} \mathrm{c}$, new	commanded roll angle from guidance system at latest sampling, deg

${ }_{\mathrm{C}}^{\mathrm{c}, \mathrm{old}} \quad$ commanded roll angle from guidance system at previous
sampling, deg
$\phi_{\text {er }} \quad$ roll-error signal in control system ($\left.\phi_{c}-\phi\right)$, deg SPACE SHUTTLE ORBITER DESCRIPTION

The physical characteristics of the space shuttle orbiter discussed in this paper are summarized in table I. A sketch of the space shuttle orbiter indicating the aerodynamic controls and RCS location is shown in figure 1. The set of nominal aerodynamic characteristics is the June 1974 aerodynamic data base compiled by the contractor. The guidance and control schemes utilized in this study are described in appendixes A and B, respectively. The guidance and control schemes are applicable from deorbit to the terminal area energy management (TAEM) interface which occurs approximately 1880 seconds after deorbit. At this interface, the space shuttle orbiter is traveling at a velocity of $457.2 \mathrm{~m} / \mathrm{sec}$ (1500 fps), and at an altitude of 21.3 km (70000 ft).

The entry in the automatic mode is directed entirely by onboard computers. The guidance system software produces a series. of angle-of-attack and roll-attitude commands which the control system software uses to direct the RCS and surface deflections.

AUTOMATIC REENTRY FLIGHT DYNAMICS SIMULATOR (ARFDS) DESCRIPTION

The guidance and control modifications were analyzed with the aid of the ARFDS. This program is an NASA Langley Research Center developed, nonlinear, six-degree-of-freedom, interactive, digital computer program which uses hardware developed for real-time simulations. The ARFDS includes an oblate rotating Earth model and uses nonlinear aerodynamics. The ARFDS is run from a control console where, at any time during the entry, control or guidance gains can be modified, winds or other disturbances added or removed, and guidance sampling frequency varied. However, no
winds or gusts were considered in this study. The entry states can be observed on time-history strip charts, deficiencies can be noted, and appropriate solutions can be incorporated.

MISSION DESCRIPTION

The space shuttle mission considered was a once-around return that had been launched into a 104° inclined orbit from the Western Test Range. This orbit results in a crossrange requirement of $2040 \mathrm{~km}(1100 \mathrm{n} . \mathrm{mi}$.$) . Figure 2$ shows some of the trajectory parameters associated with this entry.

RESULTS AND DISCUSSION

Nominal Guidance and Control Systems Simulation Results

During the nominal entry, the guidance system issues step commands to the control system at a predetermined rate. To determine the effect of varying this rate, the guidance sample time was increased from 0.04 second (the control system sample time) to 2.00 seconds (the desired rate) in six steps.

Table II shows the fuel consumption associated with the selected guidance sample times. Sampling times for the entire entry between 0.04 and 0.64 second are within a fuel-consumption range of 10 percent, whereas the 1.28 - and 2.00 -second times showed fuel-consumption increases of 63 and 106 percent, respectively, over that for the $0.04-$ second case. For the remainder of the study, a $0.32-$ second sample time was used as typical of the shorter times. Figure 3 shows the time histories of RCS fuel consumption and roll angle ϕ for guidance sampling times of $0.32,1.28$, and 2.00 seconds, and figure 4 shows the corresponding simulation strip charts for the entry between 300 and 500 seconds. The roll-angle histories do not vary appreciably in these cases.

The shuttle is commanded to fly a roll angle of -15° until approximately 400 seconds after deorbit. Between 400 and $500 \mathrm{sec}-$
onds, the angle increases to approximately -75°. During this period, there is a significant increase in RCS fuel consumption when the sampling time goes from 0.32 second to 1.28 seconds. There is a smaller increase between 1.28 seconds and 2.00 seconds (fig. 3). Alternate firings of both positive and negative yaw and roll jets, indicative of a control system limit cycle, occur for both the 1.28- and 2.00-second cases (figs. 4 (b) and 4(c), respectively).

Limit cycling for the longer sampling times (1.28 and 2.00 sec) appears three more times in the trajectory. At approximately 1140 seconds into the entry, the guidance scheme changes from equilibrium glide to constant drag relationships to calculate $\phi_{C} . \quad$ (See appendix A.) The constant drag relationships tend to produce wider variations in the ϕ_{c} signal; these variations result in limit cycling for the longer sampling times (shown by fig. 5 for a sampling time of 2.00 sec . At approximately 1500 seconds, the vehicle is commanded to perform a roll reversal. (The commanded roll angle ϕ_{c} changes signs.) At the end of the reversal, some limit cycling takes place again for the longer times (shown by fig. 6 for a sampling time of 2.00 sec). At a velocity of $2316 \mathrm{~m} / \mathrm{sec}(7600 \mathrm{fps})$, which occurs at approximately $1550 \mathrm{sec}-$ onds into the entry, additional guidance changes produce limit cycling (fig. 6). Figure 3 shows that during each of these periods of limit cycling of the roll and yaw jets, there is a corresponding increase in RCS fuel consumption that indicates that this limit cycling is the primary cause of the marked increase in fuel consumption. The control system changes to a more conventional aileron-rudder mode at approximately 1715 seconds and no further limit cycling is noted.

Modified Guidance and Control Systems Simulation Results

Four modifications designed to alleviate the RCS limit cycling associated with lower guidance sampling frequencies were examined. The first, designated "ramp," reduces the amplitude
of the step signal to the control system. The second modification, designated "gain," reduces the roll-rate response to small changes in ϕ err by changing a gain in the yaw RCS circuit. "Up-down gain," the third modification, reduces the amount of aileron incremented by the up-down counter. Both gain and up-down gain provide improvements even for the more frequent guidance samplings. The fourth, "hysteresis," modifies the deadband filter in the ${ }^{\text {er }}$ signal of the yaw RCS circuit to a hysteresis type deadband filter.

Ramp smooths the guidance system roll angle and angle-ofattack signals by dividing the guidance step commands into small increments. The commanded roll angle ϕ_{c} used by the control system is calculated as follows:

$$
\phi_{c}=\phi_{c, o l d}+\left(\frac{\phi_{c, n e w}-\phi_{c, o l d}}{d t}\right)\left(t-t_{\text {guide }}\right)
$$

The commanded angle-of-attack signal α_{c} is determined similarly. Thus, ϕ_{c} and α_{c} are varied between samplings as illustrated in sketch (a):

The smoothing action of ramp tended to eliminate the limit cycling of the roll and yaw RCS as shown by comparing figures $4(c)$ and 6 with $7(a)$ and $7(b)$, respectively.

Gain reduces the commanded roll rate for small changes in \$err by multiplying E1 in the yaw RCS circuit (fig. 8) by three for $3^{\circ}<\left|\phi_{\mathrm{err}}\right|<17^{\circ}$. The value of ϕ err is the difference between the commanded roll angle ϕ_{c} and the actual roll angle $\phi\left(\phi_{\text {err }}=\phi_{c}-\phi\right)$. Figure 9 shows the effects of gain for a commanded roll angle change of 10° for typical points along the trajectory. Gain reduces the roll-rate response to small values of $\phi_{\text {err. }}$ The strip charts of the entry with this modification (fig. 10) show that limit cycling is still present. A comparison of figures $4(c)$ and $10(a)$ shows that the amplitude of the roll rate and aileron oscillations and the duration of the yaw RCS cycling are somewhat reduced.

Up-down gain reduces the sensitivity of the $\delta a, U D$ circuit to 40 percent of the nominal (fig. 11). The up-down counter calculates the alleron deflection $\delta a, U D$ necessary to correct for the induced β caused by $y_{c g}$ offsets and disturbances such as winds. Since the induced β will bias the firings, the up-down counter can be used to find an appropriate aileron deflection for lateral trim δ a, UD. This modification was designed to reduce fuel consumption caused by overtrimming by the ailerons; the time histories indicated there was no effect on the limit cycling.

Hysteresis was designed to prevent continued cycling of the yaw RCS about the deadband limit of the perr portion of the yaw RCS circuit. The ϕ err portion of the yaw RCS circuit (fig. 8) was modified by introducing a hysteresis loop shown in sketch (b).

Sketch (b)

As the quantity ($\phi_{c}-\phi$) increases from zero, $\phi_{\text {er }}$ remains zero until $\phi_{c}-\phi$ equals some preset value b. At this time, ϕ err becomes $\phi_{c}-\phi-a$, where a is a preset value and remains equal
to this function as $\phi_{c}-\phi$ continues to increase. When $\phi_{c}-\phi$ decreases, $\phi_{e r r}$ continues to remain equal to $\phi_{C}-\phi-a \quad u n t i l$ it becomes zero at $\phi_{c}-\phi=a$, and remains zero until $\phi_{c}-\phi$ equals b again. A similar relationship for ϕ err occurs for negative values of $\phi_{c}-\phi$. Two sets of $a^{\prime} s$ and $b^{\prime} s$ were tried $(a=1.5, b=3.0$, and $a=3.0$ and $b=4.5)$. Both sets tended to decrease the limit cycling slightly, but an $a=1.5$ increased the total jet firing as the system activity increased because of the tighter deadband. For $b=4.5$, large values of ${ }^{\text {er }}$ caused some increased jet firing as higher rates were commanded when jet firing was initiated.

The results of the simulations are summarized in table III and figure 12. The roll-angle time history shown in figure 12 is typical for all the simulations conducted. The data in this figure show that the most effective modifications were ramp and gain. Up-down gain showed negligible improvement, whereas hysteresis indicated an increase in fuel consumption. A combination of ramp with gain resulted $1 n$ additional improvement in RCS fuel consumption over either modification alone (table III), and the addition of up-down gain improved the combined system resulting in a 64 -percent reduction in total fuel requirement for a sampling frequency of 2.00 seconds.

To determine the effect of $y_{c g}$ offsets, two combinations of these modifications were examined with the maximum expected offset of 0.038 m (1.5 in.$)$. The two combinations were ramp with gain and ramp together with gain and up-down gain. The system with updown gain still provided the smallest fuel consumption (table III) and required only $5.7 \mathrm{~kg}(12.5 \mathrm{lb})$ or 4 percent more fuel to handle the $y_{c g}$ offset for the entire entry with a $2.00-$ second sampling time.

CONCLUDING REMARKS

A six-degree-of-freedom simulation study was conducted to identıfy space shuttle orbiter guidance and control system modifications
which would reduce the system sensitivity to guidance system sampling frequency and would eliminate limit cycling of the controls. Previous nonlinear three-degree-of-freedom trajectory analyses indicated that a guidance sampling rate of once every 2.00 seconds is adequate to meet the targeting and in-flight constraints. However, six-degree-of-freedom analyses of the control system response to commands at this long interval indicated that it resulted in limit cycling of the reaction controls and, consequently, required large increases in reaction control system fuel. The system modifications examined were

1. Replacement of the step changes in commanded angle of attack and roll attitudes with linear variations (ramp-like)
2. Modification of a gain in the yaw reaction control system circuit to reduce the roll-rate response to small rollattitude corrections
3. Modification of a gain to reduce the commanded aileron increment produced by the up-down counter circuit
4. Addition of a hysteresis-deadband filter to the roll-angle error-signal circuit
A combination of the first three modifications resulted in a 64 -percent reaction control system fuel savings over the nominal with a 2.00-second sampling time. The combination eliminated system sensitivity to guidance system sampling frequency and limit cycling tendencies. In addition, the combination was relatively insensitive to lateral center-of-gravity offsets and required only a 4 -percent increase in reaction control system fuel consumption for the maximum expected offset of 0.038 m (1.5 in.$)$.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
June 29, 1976

APPENDIX A

ANALYTIC DRAG CONTROL ENTRY GUIDANCE SYSTEM

The baseline guidance scheme controls the entry by roll modulation while the space shuttle orbiter is flying a preselected angle-of-attack profile. Downrange is controlled by the magnitude of the roll angle, and crossrange is controlled by multiple bank reversals. The guidance system output to the control system is commanded roll angle and angle of attack.

The analytic drag control entry guidance system (ADC) was developed by the NASA Johnson Space Center to approximate an optimum entry profile determined previously. This profile is achieved by dividing the entry into five major phases as illustrated in figure 13:
(1) Constant attitude phase
(2) Constant heat-rate phase
(3) Equilibrium-glide phase
(4) Constant drag phase
(5) Transition phase

The space shuttle orbiter is commanded to fly a constant attitude trajectory until a specified total acceleration is attained. At this point, a constant stagnation heat-rate trajectory is flown through pullout to a relative velocity of $6248.4 \mathrm{~m} / \mathrm{sec}(20500 \mathrm{fps})$ or until the reference drag level becomes larger than that required to reach the target. If the latter condition is reached, the guidance scheme jumps to the constant drag phase. If this condition is not met, an equilibrium-glide profile is flown either until the reference drag level intersects the constant drag profile required to reach the target and jump to the constant drag phase or until the velocity drops off to $2743.2 \mathrm{~m} / \mathrm{sec}(9000 \mathrm{fps})$. Whenever the velocity drops to $2743.2 \mathrm{~m} / \mathrm{sec}(9000 \mathrm{fps})$, the transition phase is entered. During the transition phase, the commanded angle of attack is decreased to the value required at the terminal area energy management (TAEM) point, which occurs at a velocity of
$457.2 \mathrm{~m} / \mathrm{sec}(1500 \mathrm{fps})$ and at an altitude of approximately 21.3 km (70 000 ft).

Table IV shows the input constants that were used, and figure 14 shows the block diagram of the guidance laws.

SYMBOLS

AK dD/dV for constant heat-rate phase, used to define C23, sec-1

ALDREF (L/D) ref, used in controller
ALFM reference equilibrium-glide drag, $\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$

ALMN 1 minimum roll command outside of lateral deadband (YB), rad

ALMN2 minimum roll command inside of lateral deadband (YB), rad

ALPCMD angle-of-attack command, α_{c}, deg
AMAX1 maximum value function

ARC distance from intersection with alinement circle to target, m (ft)

ARG
$(L / D)_{v} /(L / D)$, used in roll-command equations, rad

ATK radius of Earth, m (ft)

BA equilibrium-glide roll angle used in iteration loop, rad

BAD final equilibrium-glide roll angle, deg

BA1 first iteration equilibrium-glide roll angle, deg

BA2 second iteration equilibrium-glide roll angle, deg

CAGI temporary calculation used in transition phase to calculate ALDREF and RDTREF, $\mathrm{sec}^{2} / \mathrm{m}^{2}\left(\mathrm{sec}^{2} / \mathrm{ft}^{2}\right)$

CIGAR transformation matrix from Earth-centered inertial (ECI) axes to geocentric axes

COSBADD temporary calculation in equilibrium-glide ranging phase used to calculate DREFP

CTH great circle range from orbiter to target, rad C4 coefficient used to calculate RDTREF, m/sec (ft/sec) coefficient used to calculate RDTREF parameter used to calculate RER1 and RDTREF, $\mathrm{m}^{-1}\left(\mathrm{ft}^{-1}\right)$ coefficient used to calculate LOD1, $\sec ^{2} / m\left(\sec ^{2} / f t\right)$

C17 coefficient used to calculate LOD1, sec/m (sec/ft)

C21 parameter used to calculate DREFP, RDTREF, SQ, and TT11, $\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
parameter used to calculate DREFP, E1, E2, RDTREF, SQ, TT11, and TT22, sec ${ }^{-1}$
parameter used to calculate C22, DREFP, E1, E2, SQ, TT11, and TT22, $\mathrm{m}^{-1}\left(\mathrm{ft}^{-1}\right)$

D total drag force, N (lb)

DBAR distance from runway to alinement circle, m (ft)

DBB increment in roll angle in equilibrium-glide phase, deg

DELAZ azimuth error, rad

DF
final drag level in transition phase, $\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$

DLIM control system limit drag level in transition phase, $\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$

DRAG current drag acceleration level, $m / \sec ^{2}\left(f t / \sec ^{2}\right)$

DREFP drag reference used in controller, $m / \sec ^{2}\left(f t / \sec ^{2}\right)$

DT

DTH
angle between alinement circle center and tangency point, rad

DTR $\quad=\pi / 180, \mathrm{rad} / \mathrm{deg}$

DVHEAD azimuth between runway and heading to tangency point of alinement circle, rad

D23
parameter used to calculate $A K, m / \sec ^{2}\left(f t / \sec ^{2}\right)$
current energy level, $\mathrm{m}^{2} / \mathrm{sec}^{2}\left(\mathrm{ft}^{2} / \mathrm{sec}^{2}\right)$
reference energy level used in transition phase, $\mathrm{m}^{2} / \mathrm{sec}^{2}\left(\mathrm{ft}^{2} / \mathrm{sec}^{2}\right)$

E1,E2 parameters used to calculate TT22

APPENDIX A

GAMMA flight-path angle, rad

GCLAT orbiter geocentric latitude, rad

GCLATT target geocentric latitude, rad

GS

GSTAR'

HA

HADOT $=d(H A) / d t, m / s e c(f t / s e c)$

HDSER parameter in oblate Earth correction term to RDTREF, $\mathrm{m}^{3} / \mathrm{sec}\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$

HS

IDFG2
altitude scale height, m (ft)
switching flag in constant drag phase

IDFG3 switching flag in transition phase

IFT
initialization flag in equilibrium-glide phase

ISLECT phase selector

ISTART initialization flag

ISTP iteration flag in equilibrium-glide phase

ISTRT flag indicating acceleration level equal to GSTART has been reached

ITR	iteration flag in transition phase
L/D	lift-to-drag ratio
$(\mathrm{L} / \mathrm{D})_{v}$	lift-to-drag ratio in vertical plane
LMN	minimum value of LOD 1
LN	natural logarithm function
LOD 1	desired (L/D) ${ }_{\text {v }}$
PSIE	current heading of orbiter, rad
PSIET	current heading to target, rad
RAZ	runway azimuth, rad
RCG	predicted range in constant drag phase, m (ft)
RDC	parameter used in RDTREF calculation
RDTOLD	final RDTREF in equilibrium-glide phase, m/sec (ft/sec)
RDTOL2	final RDTREF in constant drag phase, m/sec (ft/sec)
RDTREF	altitude rate reference, $\mathrm{m} / \mathrm{sec}$ ($\mathrm{ft} / \mathrm{sec}$)
REC	vector defining runway coordinate system
REC 1	$=[\mathrm{REC}]^{-1}$
REH	distance from center of Earth to vehicle, m (ft)
REQ	predicted equilibrium-glide phase range, m (ft)

RER 1	parameter in range prediction for transition phase, m
RFF	predicted range in constant heat-rate phase, m (ft)
RG	vector from orbiter to runway center, m (ft)
RGP	vector from orbiter to alinement circle center, m (ft)
RK2ROL	roll direction (+ right, - left)
RLON	longitude of orbiter, rad
RLONT	target longitude, rad
ROLLC	roll-angle command, ϕ_{c}, rad
RPT	desired range in transition phase, m (ft)
RPT 1	range bias below velocity of $456.2 \mathrm{~m} / \mathrm{sec}(1500 \mathrm{fps})$, m (ft)
RTE	radius of Earth at runway, m (ft)
RTURN	radius of alinement circle, m (ft)
R 11	first iteration of range prediction in equilibriumglide and transition phases, m (ft)
R12	second iteration of range prediction in equilibriumglide and transition phases, m (ft)
SIGN(A, B)	function which gives to the value of A the algebraic sign of the variable B

SQ

SQQ
parameter used in constant heat-rate range prediction, $\sec ^{-1}$

TA vector from alinement circle tangency point to vehicle, m (ft)

TAP

TARE

TDREF

TEMP

TRANGE

T 1

T2
constant drag level required to reach target, $\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$

TT11, TT22
parameters used in range prediction in constant heat-rate phase, m (ft)

U

UTARE TARE unit vector

UXYZE \quad RG unit vector

V Earth relative velocity, m/sec (ft/sec)

VBB intersection velocity between constant heat-rate phase and equilibrium-glide phase, m/sec (ft/sec)

VCG
predicted intersection velocity between constant drag phase and equilibrium-glide phase, m/sec (ft/sec)

VINERT inertial velocity, $\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$

VOLD final velocity in equilibrium-glide phase, m/sec (ft/sec)

VOLD2 final velocity in constant drag phase, $\mathrm{m} / \mathrm{sec}$ (ft/sec)

VQ
predicted final velocity for constant drag phase, $\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$

VSAT reference circular orbit velocity, m/sec (ft/sec)

V10LD value of VOLD - $152.4 \mathrm{~m} / \mathrm{sec}(500 \mathrm{ft} / \mathrm{sec}), \mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$

V20LD value of VOLD2 $-152.4 \mathrm{~m} / \mathrm{sec}(500 \mathrm{ft} / \mathrm{sec}), \mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$

XLFAC total acceleration, $\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$

XLOD L/D of vehicle with undeflected control surfaces including viscous effects

XYZE geocentric position vector, m (ft)

YB
lateral deadband (amount of overshoot that guidance system will allow before commanding roll reversal), rad

APPENDIX B

DIGITAL AUTOPILOT

Symbols

The following symbols are used in this appendix:

E_{Y}	yaw RCS error signal
$f\left(\delta_{e}\right)$	function of δ_{e} used to limit $\delta_{a, c}$, deg
g	acceleration of gravity, $\mathrm{m} / \sec ^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
h	integration step size, sec
Hm_{e}	elevon hinge moment, $\mathrm{N}-\mathrm{m}$ ($1 \mathrm{~b}-\mathrm{ft}$)
Hm_{r}	rudder hinge moment, $\mathrm{N}-\mathrm{m}$ (lb-ft)
K_{L}	rolling-moment RCS amplification factor
$\mathrm{K}_{\text {MD }}$	pitching-moment RCS amplification factor from downfiring jets
K_{MU}	pitching-moment RCS amplification factor from up-firing jets
K_{N}	yawing-moment RCS amplification factor
K_{P}	aileron gain
K_{α}	elevator gain
$\mathrm{K}_{\delta}{ }_{r}$	rudder gain
$L_{\text {RCS }}$	rolling moment due to RCS, $\mathrm{N}-\mathrm{m}$ ($1 \mathrm{~b}-\mathrm{ft}$)
$L_{\text {RJ }}$	```ideal rolling moment due to firing of one roll jet, N-m (lb-ft)```
M	Mach number

$M_{\text {PJ }}$	ideal pitching moment due to firing of one pitch jet, $N-m(l b-f t)$
$M_{\text {RCS }}$	pitching moment due to RCS, $\mathrm{N}-\mathrm{m}$ ($\mathrm{Ib}-\mathrm{ft}$)
$\mathrm{N}_{\mathrm{RCS}}$	yawing moment due to RCS, $\mathrm{N}-\mathrm{m}$ (1b-ft)
N_{YJ}	ideal yawing moment due to firing of one yaw jet, $\mathrm{N}-\mathrm{m}$ (lb-ft)
p	roll rate, deg/sec
P	convolution coefficient
PJN	number of negative pitch jets firing
PJP	number of positive pitch jets firing
q	pitch rate, deg/sec
\bar{q}	dynamic pressure, Pa (psf)
q_{1}	convolution coefficlent, sec
q_{2}	convolution coefficient, sec ${ }^{2}$
\bar{Q}	vector of convolution coefficients
r	yaw rate, deg/sec
r^{\prime}	$=r-(180 \mathrm{~g} \sin \phi \cos \theta) / \pi V_{R}, \mathrm{deg} / \sec$
RJN	number of negative roll jets firing
RJP	number of positive roll jets firing

APPENDIX B

s	Laplacian operator
S_{e}	elevon reference area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
S_{r}	rudder reference area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
t	time, sec
t_{k}	time at kth sample, sec
U	convolution forcing function
\bar{U}	vector of forcing-function terms
$\dot{\text { U }}$	$=\mathrm{dU} / \mathrm{dt}$
V_{R}	Earth relative velocity, m/sec (ft/sec)
W	filter root, sec^{-1}
X	convolution state variable
$\dot{\mathrm{x}}$	$=d x / d t$
YJN	number of negative yaw jets firing, nondimensional
YJP	number of positive yaw jets firing, nondimensional
α	angle of attack, deg
α_{c}	commanded angle of attack from guidance system, deg
β	angle of sideslip, deg
δ_{a}	aileron deflection, deg

סa,c commanded aileron deflection, deg
反a,UD commanded aileron deflection from up-down counter, deg
$\delta_{B F} \quad$ body-flap deflection, deg
${ }^{\delta} e \quad$ elevator deflection, deg

反e,c commanded elevator deflection, deg

Sel left elevon panel deflection, deg
$\delta^{\text {el }, ~ c ~ c o m m a n d ~ l e f t ~ e l e v o n ~ p a n e l ~ d e f l e c t i o n, ~ d e g ~}$
${ }^{\delta} \mathrm{e}, \ell \mathrm{m}$ maximum change in elevon command that can be realized in one control cycle, deg

Ser right elevon panel deflection, deg
$\delta_{\text {er }, ~ c ~ c o m m a n d e d ~ r i g h t ~ e l e v o n ~ p a n e l ~ d e f l e c t i o n, ~ d e g ~}^{c}$
$\delta_{e, t} \quad$ initial elevator setting, deg
$\delta_{r} \quad$ rudder deflection, deg
${ }^{\delta}$ r, c commanded rudder deflection, deg
${ }^{\delta} r, \ell m$ maximum change in rudder command that can be realized in one control cycle, deg
${ }^{\delta} \mathrm{SB}$
speed-brake deflection, deg
$\theta \quad$ pitch angle, deg
ϕ roll angle, deg
$\phi_{C} \quad$ commanded roll angle to control system, deg variable of integration, sec

Description of Digital Autopilot

The digital autopilot (DAP) is designed to fly the space shuttle orbiter automatically from deorbit to the terminal area energy management (TAEM) interface which occurs at an altitude of approximately 21.3 km (70 000 ft) with a velocity of $457.2 \mathrm{~m} / \mathrm{sec}$ (1500 fps). The DAP directs both the reaction control system (RCS) and the aerodynamic control surfaces.

The speed-brake $\delta_{S B}$ and body-flap $\delta_{B F}$ deflection schedules are shown in figure 15 , where $\delta \mathrm{SB}$ is determined from a preset velocity schedule and δ_{BF} is dependent on the center-of-gravity location. Figures 16 to 24 are block diagrams of the various elements of the DAP. Two types of signal limiting filters are used in this autopilot. The first type is illustrated in sketch (c):

Sketch (c)

This filter limits the value of the quantity A to be between x and y. The second type, called a hysteresis filter, can appear in one of two ways (sketch (d)):

Sketch (d)
As A increases from zero, er remains zero until point b is reached. At this time, err becomes the value indicated (either a constant value if filter is type 1 or equal to A if filter is type 2). As A starts to decrease, it remains the value indicated until point a is reached where err becomes zero again. A similar situation would exist for an A decreasing from zero.

The elevons are used for both elevator $\delta \mathrm{e}$ and aileron $\delta \mathrm{a}$ functions. The elevator command block diagram is shown in figure 16. The aileron functions in one of two ways depending on the flight regime: for $\alpha \leqq 18^{\circ}$ and $M \leqq 5$, the aileron is used for roll-attitude ϕ control (fig. 17(a)); when these conditions are not present, the ailerons are used for turn coordination (fig. 17(b)).

If the orbiter has a lateral center-of-gravity offset, the number of positive yaw and roll thruster firings are not equal to the number of negative yaw and roll thruster firings caused by the induced sideslip. By counting the number of positive and negative yaw and roll thruster firings, it is possible to establish the steady-state aileron deflection required to offset this induced sideslip. The establishment of this aileron deflection is the role of the up-down counter shown in figure 18. The numbers in parentheses in the block diagrams are the expressed values in U.S. Customary Units.

Figure 19 shows that the commanded left and right elevon deflections are functions of $\delta_{e}, \delta_{a, c}$, and $\delta_{e, c}$. The rudder δ_{r} (fig. 20) is used for turn coordination when the aileron is used for roll control. If the ailerons are being used for turn coordination, the rudder is inoperative.

The pitch RCS (fig. 21) is operative for \bar{q} less than 958 Pa (20 psf). In this regime the pitch RCS is used, along with the elevator, for longitudinal control.

The roll RCS (fig. 22) is operative for \bar{q} less than 479 Pa (10 psf) and is used, together with the ailerons, for turn coordination.

The yaw RCS (fig. 23) is operative throughout the entry until TAEM and serves one of two purposes depending on the flight conditions. If the ailerons are used for attitude control, the yaw RCS (fig. 23(a)) aids the rudder in maintaining turn coordination. If the conditions are such that the ailerons are used for turn coordination, the yaw RCS (fig. 23(b)) is used for roll-attitude ϕ control.

To integrate the linear first-order differential equations in the control system, the convolution technique is used. This technique is a one-pass scheme that has demonstrated a high degree of accuracy in other real-time simulations, including piloted simulations. A typical first-order system

$$
\dot{x}(t)+W x(t)=U(t)
$$

where $U(t)$ is the forcing function, is illustrated in sketch (e):

Sketch (e)
The solution is

$$
x(t)=e^{-W t} x(0)+\int_{0}^{t} e^{-W(t-\tau)} U(\tau) d \tau
$$

The convolution technique is a numerical method based on a Taylor series approximation (first two terms) of the forcing function U and results in the following difference equation:

APPENDIX B

$$
x\left(t_{k}+h\right)=P(h) x\left(t_{k}\right)+\bar{Q}(h) \bar{u}\left(t_{k}\right)
$$

where

$$
\begin{aligned}
& P(h)=e^{-W h} \\
& \bar{Q}(h)=\left[q_{1}(h), q_{2}(h)\right] \\
& \bar{U}\left(t_{k}\right)=\left[\begin{array}{l}
U\left(t_{k}\right) \\
U\left(t_{k}\right)
\end{array}\right] \\
& q_{1}(h)=\int_{0}^{h} e^{-W(h-\tau)} d \tau=\frac{1-e^{-W h}}{W}=\frac{1-P}{W} \\
& q_{2}(h)=\int_{0}^{h} \tau e^{-W(h-\tau)} d \tau=\frac{-1-e^{-W h}+W h}{W^{2}}=\frac{h-q_{1}}{W}
\end{aligned}
$$

The control actuators (fig. 24) are integrated the same way, except that provisions are made for both position and rate limits.

The RCS model uses the following equations to account for aerodynamic interference:

$$
\begin{aligned}
L_{R C S}= & L_{R J}\left[(R J P-R J N) K_{L}+(Y J P-Y J N) C_{L N}\right] \\
M_{R C S}= & M_{P J}\left[(P J P) K_{M U}-(P J N) K_{M D}+(Y J P+Y J N) C_{M N}\right. \\
& \left.+(R J P+R J N) C_{M L}\right] \\
N_{R C S}= & N_{Y J}\left[(Y J P-Y J N) K_{N}+(R J P-R J N) C_{N L}\right]
\end{aligned}
$$

The values for the coefficients are shown in table V.

REFERENCE

1. Malkin, M. S.: Space Shuttle/The New Baseline. Astronaut. \& Aeronaut., vol. 12, no. 1, Jan. 1974, pp. 62-68.

TABLE I.- PHYSICAL CHARACTERISTICS OF SPACE SHUTTLE ORBITER
Mass properties:
Mass, kg (lb) 83001 (182986)
Moments of inertia:
$I_{X X}, \mathrm{~kg}-\mathrm{m}^{2}\left(\mathrm{slug}-\mathrm{ft}^{2}\right)$ $1029066(759000)$

$$
I_{Y Y}, k g-m^{2}\left(s l u g-f t^{2}\right) \quad . \quad . \quad . \quad . \quad 7816290(5765000)
$$

$$
I_{Z Z}, k g-m^{2}\left(s l u g-f t^{2}\right) \quad . \quad . \quad . \quad . . .8015596(5912000)
$$

$$
I_{X Z}, k g-m^{2}\left(s l u g-\mathrm{ft}^{2}\right) \quad . \quad \quad 177612(131000)
$$

$$
I_{X Y}=I_{Y Z}=0
$$

Wing:
Reference area, $m^{2}\left(f t^{2}\right)$ 249.91 (2690.0)
Chord, m (ft) 12.06 (39.57)
Span, m (ft) 23.79 (78.06)
Elevon:
Reference area, $m^{2}\left(f t^{2}\right)$ 19.51 (210.0)
Chord, m (ft) 2.30(7.56)
Rudder:
Reference area, $m^{2}\left(f t^{2}\right)$ 9.30(100.15)
Chord, m (ft) 1.86 (6.1)
Body flap:
Reference area, $m^{2}\left(f t^{2}\right)$ 12.54 (135.0)
Chord, m (ft) 2.06 (6.75)
TABLE II.- EFFECT OF GUIDANCE SYSTEM SAMPLE TIME ON RCS FUEL CONSUMPTION
[Control system sample time 0.04 second]

Period	RCS fuel consumption, kg (1 b), for guidance system sample time, sec, of -						
	0.04	0.08	0.16	0.32	0.64	1.28	2.00
Entare entry	187.0(412.2)	197.5 (435.5)	187.9 (414.3)	197.0 (434.3)	203.6 (448.8)	304.1 (670.4)	385.6 (850.2)
First 500 seconds	81.6 (180.0)	80.3 (177.0)	80.9 (178.4)	89.1 (196.5)	93.2 (205.5)	160.2 (353.2)	180.3 (397.4)

TABLE III.- EFFECT OF SYSTEM MODIFICATIONS ON RCS FUEL CONSUMPTION

Modification	RCS fuel consumption for guidance system sample times of -					
	0.32 sec		1.28 sec		2.00 sec	
	kg	1 b	kg	1 b	kg	1 b
Without mods	197.0	434.3	304.1	670.4	385.6	850.2
Ramp	191.4	422.0	187.5	413.4	189.4	417.6
Gain	171.9	379.0	196.0	432.0	236.4	521.3
Up-down gain	176.5	389.1	284.0	626.2	378.2	833.9
Hysteresis for -						
$a=1.5^{\circ}$	198.3	437.2	293.1	646.2	387.8	855.0
$b=3.0^{\circ}$						
$a=3.0^{\circ}$	400.7	883.3	440.6	971.4	452.1	996.7
$b=4.5^{\circ}$						
Ramp + Gain	162.5	358.3	155.4	342.6	160.4	353.8
Ramp + Gain + Up-down gain	139.1	306.6	135.6	299.0	140.3	309.4
Ramp + Gain,	172.5	380.4	173.2	381.9	167.1	368.3
$\mathrm{y}_{\mathrm{cg}}=0.038 \mathrm{~m}(1.5 \mathrm{in} .)$						
$\begin{gathered} \text { Ramp }+ \text { Gain + Up-down gain }, \\ y_{c g}=0.038 \mathrm{~m}(1.5 \mathrm{in} .) \end{gathered}$	146.7	323.4	142.7	314.6	146.0	321.9

TABLE IV.- ANALYTIC DRAG CONTROL GUIDANCE INPUT CONSTANTS

Parameter	Value	Unit
ALFM	7.62 (25)	$\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
ALMN 1	0.7986355	Nondimensional
ALMN2	0.9659258262	Nondimensional
ATK	$6366707.02\left(2.08881464 \times 10^{7}\right)$	m (ft)
DBAR	14360.4 (48 000)	m (ft)
DF	5.819 (19.09)	$\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
EEF4	$185806.08\left(2.0 \times 10^{6}\right)$	$\mathrm{m}^{2} / \mathrm{sec}^{2}\left(\mathrm{ft}^{2} / \mathrm{sec}^{2}\right)$
GCLATT	34.55577617	deg
GS	9.815 (32.2)	$\mathrm{m} / \mathrm{sec}^{2}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
GSTART	0.05	Nondimensional
RAZ	-0.7679448709	rad
RLONT	-120.5338	deg
RPT	421885.6 ($\left.1.3841391 \times 10^{6}\right)$.	m (ft)
RPT 1	23150 (75 951.4)	m (ft)
RTE	$6373298.953\left(2.090977347 \times 10^{7}\right)$	$m(f t)$
RTURN	4632.96 (15 200)	$m(f t)$
VQ	2133.6 (7000)	$\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$
VSAT	7853.54 (25 766.2)	$\mathrm{m} / \mathrm{sec}$ ($\mathrm{ft} / \mathrm{sec}$)

TABLE V.- INTERFERENCE RCS VALUES

Jet moment	Value, $N-m(1 \mathrm{~b}-\mathrm{ft})$
L_{RJ}	$11185.5\left(\begin{array}{ll}8 & 250.0) \\ \mathrm{M}_{\mathrm{PJ}} & 38325.6(28267.5) \\ \mathrm{N}_{\mathrm{YJ}} & 38878.8(28675.5) \\ \hline\end{array} \mathrm{e}\right.$

$\bar{q}, \operatorname{Pa}$	(psf)	K_{L}	K_{MU}	K_{MD}	K_{N}	C_{LN}	C_{MN}	C_{ML}
0		0.746	1.0	0.740	1.02	-0.624	0	0.130
119.7	(2.5)	.688	1.0	.678	1.02	-.953	.038	.161
239.4	(5.0)	.630	1.0	.616	1.02	-1.069	.076	.192
478.8	(10.0)	.533	1.0	.541	1.02	-1.069	.114	.230
718.2	(15.0)	.475	1.0	.512	1.02	-1.069	.133	.244
957.6	(20.0)	.436	1.0	.493	1.02	-1.069	.111	

M	K_{N}	C_{LN}	$C_{M N}$
$\mathrm{q}>957.6 \mathrm{~Pa}(20 \mathrm{psf})$ 2 1.02 -0.701 0.076 5 1.02 -.934 .076 30 1.02 -1.166 .076			

Figure 1.- Space shuttle orbiter.

Figure 2.- Space shuttle orbiter entry trajectory parameters.

Figure 2.- Concluded.

(a) Guidance system sampling time - 0.32 sec.

Figure 4.- Simulation strip charts for various guidance system sampling times.

(b) Guidance system sampling time - 1.28 sec . Figure 4.- Continued.

(c) Guidance system sampling time - 2.00 sec . Figure 4.- Concluded.

Figure 5.- Simulation strip charts for early portion of constant drag phase with guidance sampling time of 2.00 sec .

$$
\begin{aligned}
& \delta_{r} \\
& \operatorname{deg}
\end{aligned}
$$

B.
deg

Figure 6.- Simulation strip charts for later portion of entry with guidance sampling time of 2.00 sec .

(a) Early portion of entry.

Figure 7.- Simulation strip charts for ramp with guidance sampling time of 2.00 sec .

(b) Final portion of entry.

Figure 7.- Concluded.

Figure 8.- Yaw RCS block diagram modified by gain.

(a) Early portion of entry.

Figure 10.- Simulation strip charts for gain with guidance sampling time of 2.00 sec .

(b) Final portion of entry.

Figure 10.- Concluded.

$\quad \begin{array}{r}* N u m b e r ~ o f ~ y a w ~ j e t s ~ t h a t ~ c a m e ~ o n ~(+~ f o r ~ p o s i t i v e ~ j e t, ~-~ f o r ~ n e g a t i v e ~ j e t) . ~\end{array}$
**Number of roll jets that came on (+ for positive jet, - for negative jet).

Figure 12.- RCS fuel and roll-angle ϕ histories for various control system modifications with guidance system sampling time of 2.00 sec .

*ISLECT $=0$ initially
Figure 13.- Analytic drag control entry guidance system flow diagram.

Figure 13.- Concluded.


```
REC(1,1) = -C\emptysetS(RAZ)*SIN(GCLATT)*C\emptysetS(RL\emptysetNT)-SIN(RAZ)*SIN(RL\emptysetNT)
REC(1,2) = - C\emptysetS(RAZ)*SIN(GCLATT)*SIN(RL\emptysetNT)+SIN(RAZ)*C\emptysetS(RL\emptysetNT)
REC (1,3) = CDS (RAZ)*CDS (GCLATT)
REC(2,1) = SIN(RAZ)*SIN(GCLATT)*C\emptysetS(RL\emptysetNT)-C\emptysetS(RAZ)*SIN(RL\emptysetNJ)
REC(2,2) = SIN(RAZ)*SIN(GCLATT)*SIN(RL\emptysetNT)+C\emptysetS(RAZ)*C\emptysetS(RL\emptysetNT)
REC(2,3) = -SIN(RAZ)*CDS(GCLATT)
REC (3,1) = - CDS(GCLATT)*C\emptysetS (RL\emptysetNT)
REC(3,2) = -CDS(GCLATT)*SIN(RL\emptysetNT)
REC(3,3) = -SIN(GCLATT)
```


Figure 14.- Analytic drag control entry guidance system block diagram.

Figure 14.- Continued.

Figure 14.- Continued.

```
D23 = -GS* (VBB2}/VSAT 2 - 1.)/(1.4*COS(BA))
AK = -3.5*D23/VBB
C23 = -AK/3352.8
C22 = 15849.6*C23
C21 = D23 - C22*VBB - C23*VBB2
```


$$
\begin{aligned}
& \mathrm{SQQ}=\sqrt{\mathrm{SQ}} \\
& \mathrm{TT} 22= \mathrm{C} 22^{*}\left(\mathrm{TAN}^{-1}\left(2 . * \mathrm{C} 23^{*} \mathrm{VBB} / \mathrm{SQQ}+\mathrm{C} 22 / \mathrm{SQQ}\right)\right. \\
&\left.-\mathrm{TAN}^{-1}\left(2 . \star \mathrm{C} 23^{*} \mathrm{~V} / \mathrm{SQQ}+\mathrm{C} 22 / \mathrm{SQQ}\right)\right) /\left(\mathrm{C} 23^{*} \mathrm{SQQ}\right)
\end{aligned}
$$

```
    SQQ = \sqrt{}{-SQ}
    El = (2.*C23*VBB + C22 - SQQ)/(2.*C23*VBB + C22 + SQQ)
    E2 = (2.*C23*V + C22 - SQQ)/(2.*C23*V + C22 + SQQ)
    TT22 = C22*LN(E1/E2)/(2.*C23*SQQ)
```


PF $=\mathrm{TT} 11+\mathrm{TT22}$

REQ $=.^{*}{ }^{\top} E M P \star L N\left(\left(V C G^{2}-V S A T^{2}\right) /\left(V B B^{2}-V S A T^{2}\right)\right)$
$R C G=\left(V C G^{2}-V Q^{2}\right) /(2 . \star A L F M)$

Figure 14.- Continued.

Figure 14.- Concluded.

Figure 16.- Elevator command block diagram.

(a) $\alpha \leqq 18^{\circ}$ and $M \leqq 5$.
Figure 17.-Aileron command block diagram.

Number of yaw jets that came on (+ for positive jet, - for negative jet).
Figurer of roll jets that came on (+ for positive jet, - for negative jet)
(8. Up-down counter block diagram.

Figure 19.- Right and left elevon panel commands.

Figure 21.- Pitch RCS error-signal block diagram.

Figure 22.- Roll RCS error-signal block diagram.

(b) $\alpha>18^{\circ}$ or $M>5$.
Figure 23.- Concluded.

Figure 24.- Actuator block diagrams.

FOURTH-CLASS RATE BOOK

> "The aeronautical and space activities of the United States shall be conducted so as to contribute.. to the expansion of buman knowl edge of phenomena in the atmosphere and space The Administration shall provide for the widest practcable and appropriate dissemination of information concernng its activities and the results thereof"
> -NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS Scientific and technical information considered important, complete, and a lastung contribution to existing knowledge.
TECHNICAL NOTES Information less broad in scope but nevertheless of importance as a contribution to existing knowledge

TECHNICAL MEMORANDUMS

Information receiving limited distribution because of prelımınary data, security classfication, or other reasons Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS Information published in a foreign language considered to merit NASA distribution in English

SPECIAL PUBLICATIONS Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies

TECHNOLOGY UTILIZATION

 PUBLICATIONS Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications Publications include Tech Briefs, Technology Utilization Reports and Technology SurveysDetails on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

[^0]: *For sale by the National Technical Information Service, Springiteld, Virginia 22161

