22 research outputs found

    Relatedness and heterogeneity at the near-terminal end of the genome of a parapoxvirus bovis 1 strain (B177) compared with parapoxvirus ovis (Orf virus)

    No full text
    The present study provides for the first time an extended investigation of individual genes located at the near-terminal right end of the genome of parapoxvirus bovis 1, Bovine papular stomatitis virus (BPSV) strain B177 and Orf virus (ORFV). Comparison of the respective DNA sequences of ORFV strain D1701 (9.9 kbp) and BPSV B177 (7.7 kbp) revealed a very similar organization of closely related genes transcribed in a rightward orientation. The most salient findings of this study were: (i) the absence of the ORFV-specific vascular endothelial growth factor (VEGF-E) gene in the BPSV isolate; (ii) the presence of an interleukin-10 (IL-10) orthologue; and (iii) the detection of three new genes encoding ankyrin-repeat-containing polypeptides. These results not only contribute to potential improvements of future molecular differentiation between the parapoxvirus species, but also shed new light on different pathobiologies among parapoxviruses

    Generation of recombinant parapoxviruses: non-essential genes suitable for insertion and expression of foreign genes

    No full text
    Orf virus (OV) is an epitheliotropic poxvirus and belongs to the genus Parapoxvirus (PPV). PPV, especially OV, is regarded as a promising candidate for an expression vector. Among available live vaccines only strain D1701 represents a highly attenuated OV strain with clearly reduced pathogenicity. Therefore, we started to identify potentially non-essential genes or regions of D1701, which might be suitable for insertion and expression of foreign genes. The present contribution reviews some of the progress using the vegf-e (homologue of the mammalian vascular endothelial growth factor) gene locus for the generation of recombinant D1701. The vegf-e gene of D1701 is dispensable for virus growth in vitro and in vivo, and represents a major virulence determinant of OV. It is shown that foreign genes can be inserted and functionally expressed in the vegf-e locus, also leading to the induction of a specific immune response in the non-permissive host. Furthermore, it is reported that adaptation to VERO cells led to the deletion of three further regions of the OV D1701 genome, which seems to be combined with additional virus attenuation in sheep. Molecular analysis of this OV D1701 variant allows the identification of new, potentially non-essential sites in the viral genome

    Proteomic analysis of the sarcosine-insoluble outer membrane fraction of the bacterial pathogen Bartonella henselae

    No full text
    Bartonella henselae is an emerging zoonotic pathogen causing a wide range of disease manifestations in humans. In this study, we report on the analysis of the sarcosine-insoluble outer membrane fraction of B. henselae ATCC 49882 Houston-1 by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1-D SDS-PAGE) and two-dimensional nonequilibrium pH gradient polyacrylamide gel electrophoresis (2-D NEPHGE). Protein species were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and subsequent database query against the B. henselae genome sequence. Subcellular fractionation, application of the ionic detergent lauryl sarcosine, assessment of trypsin sensitivity, and heat modifiability of surface-exposed proteins represented valuable tools for the analysis of the outer membrane subproteome of B. henselae. 2-D NEPHGE was applied to display and catalogue a substantial number of proteins associated with the B. henselae sarcosine-insoluble outer membrane fraction, resulting in the establishment of a first 2-D reference map of this compartment. Thus, 53 distinct protein species associated with the outer membrane subproteome fraction were identified. This study provides novel insights into the membrane biology and the associated putative virulence factors of this pathogen of increasing medical importance

    Progression and variability of TNBS colitis-associated inflammation in rats assessed by contrast-enhanced and T2-weighted MRI

    No full text
    BACKGROUND: A common feature of preclinical models of colitis is that the time-course, magnitude, and persistence of inflammation vary considerably within the experimental animal group. Accordingly, noninvasive, serial quantification of colonic inflammation could advantageously guide dosing regimens and assess drug efficacy, thus enhancing the value of colitis models in research. This investigation using magnetic resonance imaging (MRI) was therefore undertaken to objectively determine inflammatory progression, variability, and response to therapy associated with trinitrobenzene sulfonic acid (TNBS)-induced colitis in Wistar rats. METHODS: Rats underwent TNBS treatment on Day 0 and received sulfasalazine or vehicle (methylcellulose) orally, daily, from Day -1 (prophylactically) or Day 2 (therapeutically). T2-weighted and semidynamic T1-weighted contrast-enhanced MRI (CE-MRI) was repeated over 7-10 days to measure colon wall thickness and perfusion-related aspects of inflammation. Rectal bleeding, stool consistency, and disease activity were scored throughout and colon pathology determined terminally. RESULTS: Principal component analysis of the CE-MRI time-series highlighted colon wall and mesenteric inflammation, which increased by 6-8x naïve values. Peristaltic artifacts were distinguished from perfusion changes using the normalized temporal standard deviation. MRI correlated strongly with terminal colon weight (mean correlation r = 0.8), well with body weight change (r = -0.7), but little with conventional clinical scores. Sulfasalazine reduced inflammation administered prophylactically and therapeutically. CONCLUSIONS: Inflammation and therapeutic efficacy can be sensitively quantified noninvasively using MRI in TNBS-treated rats. This methodology provides unique and objective in vivo measures of inflammation that can guide dosing strategies, enhancing colitis research effectiveness and the assessment of potential IBD therapeutics
    corecore