54 research outputs found

    Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    Full text link
    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett. Vol. 17, Dec. 200

    Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand

    Get PDF
    Dysregulated mitophagy has been linked to Parkinson’s disease (PD) due to the role of PTEN-induced kinase 1 (PINK1) in mediating depolarization-induced mitophagy in vitro. Elegant mouse reporters have revealed the pervasive nature of basal mitophagy in vivo, yet the role of PINK1 and tissue metabolic context remains unknown. Using mito-QC, we investigated the contribution of PINK1 to mitophagy in metabolically active tissues. We observed a high degree of mitophagy in neural cells, including PDrelevant mesencephalic dopaminergic neurons and microglia. In all tissues apart from pancreatic islets, loss of Pink1 did not influence basal mitophagy, despite disrupting depolarization-induced Parkin activation. Our findings provide the first in vivo evidence that PINK1 is detectable at basal levels and that basal mammalian mitophagy occurs independently of PINK1. This suggests multiple, yet-tobe- discovered pathways orchestrating mammalian mitochondrial integrity in a context-dependent fashion, and this has profound implications for our molecular understanding of vertebrate mitophagy

    Comprehensive Gene and microRNA Expression Profiling Reveals a Role for microRNAs in Human Liver Development

    Get PDF
    BACKGROUND AND AIMS: microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. miRNAs have been implicated in regulating gene expression in embryonic developmental processes, including proliferation and differentiation. The liver is a multifunctional organ, which undergoes rapid changes during the developmental period and relies on tightly-regulated gene expression. Little is known regarding the complex expression patterns of both mRNAs and miRNAs during the early stages of human liver development, and the role of miRNAs in the regulation of this process has not been studied. The aim of this work was to study the impact of miRNAs on gene expression during early human liver development. METHODS: Global gene and miRNA expression were profiled in adult and in 9-12w human embryonic livers, using high-density microarrays and quantitative RT-PCR. RESULTS: Embryonic liver samples exhibited a gene expression profile that differentiated upon progression in the developmental process, and revealed multiple regulated genes. miRNA expression profiling revealed four major expression patterns that correlated with the known function of regulated miRNAs. Comparison of the expression of the most regulated miRNAs to that of their putative targets using a novel algorithm revealed a significant anti-correlation for several miRNAs, and identified the most active miRNAs in embryonic and in adult liver. Furthermore, our algorithm facilitated the identification of TGFbeta-R1 as a novel target gene of let-7. CONCLUSIONS: Our results uncover multiple regulated miRNAs and genes throughout human liver development, and our algorithm assists in identification of novel miRNA targets with potential roles in liver development

    Pitfalls in the Diagnosis of Nodular Lymphocyte Predominant Hodgkin Lymphoma: Variant Patterns, Borderlines and Mimics.

    No full text
    Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) represents approximately 5% of Hodgkin lymphoma and typically affects children and young adults. Although the overall prognosis is favorable, variant growth patterns in NLPHL correlate with disease recurrence and progression to T-cell/histiocyte-rich large B-cell lymphoma or frank diffuse large B-cell lymphoma (DLBCL). The diagnostic boundary between NLPHL and DLBCL can be difficult to discern, especially in the presence of variant histologies. Both diagnoses are established using morphology and immunophenotype and share similarities, including the infrequent large tumor B-cells and the lymphocyte and histiocyte-rich microenvironment. NLPHL also shows overlap with other lymphomas, particularly, classic Hodgkin lymphoma and T-cell lymphomas. Similarly, there is overlap with non-neoplastic conditions, such as the progressive transformation of germinal centers. Given the significant clinical differences among these entities, it is imperative that NLPHL and its variants are carefully separated from other lymphomas and their mimics. In this article, the characteristic features of NLPHL and its diagnostic boundaries and pitfalls are discussed. The current understanding of genetic features and immune microenvironment will be addressed, such that a framework to better understand biological behavior and customize patient care is provided
    • …
    corecore