64 research outputs found

    A Preliminary Comparison of Pilots\u27 Weather Minimums and Actual Decision-Making

    Get PDF
    Adverse weather conditions remain a leading contributing factor in general aviation accidents. In compromising situations, such as severe weather, pilots continue to make decisions, which endanger themselves, passengers, and the aircraft. Although technology and training have lowered the risks associated with poor decision making by aviators, they are often still faced with scenarios requiring split second judgments. A countermeasure to these risks is the use of personal weather minimums by pilots. The purpose of this study was to examine pilot’s decision-making and performance, while flying an instrument approach, under extreme conditions of low visibility and ceiling as based on their stated personal minimums. A sample of 35 flight students with instrument ratings was recruited from a large university flight program located in the southeastern part of the United States. Participants were asked a series of pre-test questions, including their personal weather minimums, and then flew an ILS instrument approach on an Elite-1000 flight simulator at the subject university. The findings indicate approximately eighty percent of participants, on average, descended nearly two-hundred feet below their stated personal minimums before aborting the approach. Furthermore, forty percent of them also flew twenty-five feet below the federal requirement (200 feet above ground level) before aborting the approach. These results are pertinent to advance our understanding of the many different variables affecting pilot’s decision making. Understanding these outcomes will progress our initiatives to ensure safer air travel, while improving pilot’s competence and their passenger’s confidence

    Hepatitis C Virus Antigenic Convergence

    Get PDF
    Vaccine development against hepatitis C virus (HCV) is hindered by poor understanding of factors defining cross-immunoreactivity among heterogeneous epitopes. Using synthetic peptides and mouse immunization as a model, we conducted a quantitative analysis of cross-immunoreactivity among variants of the HCV hypervariable region 1 (HVR1). Analysis of 26,883 immunological reactions among pairs of peptides showed that the distribution of cross-immunoreactivity among HVR1 variants was skewed, with antibodies against a few variants reacting with all tested peptides. The HVR1 cross-immunoreactivity was accurately modeled based on amino acid sequence alone. The tested peptides were mapped in the HVR1 sequence space, which was visualized as a network of 11,319 sequences. The HVR1 variants with a greater network centrality showed a broader cross-immunoreactivity. The entire sequence space is explored by each HCV genotype and subtype. These findings indicate that HVR1 antigenic diversity is extensively convergent and effectively limited, suggesting significant implications for vaccine development

    Human Monoclonal Antibodies to a Novel Cluster of Conformational Epitopes on HCV E2 with Resistance to Neutralization Escape in a Genotype 2a Isolate

    Get PDF
    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus

    A genome-wide association search for type 2 diabetes genes in African Americans

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    A genome-wide association search for type 2 diabetes genes in African Americans

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Mimotopes of the hepatitis C virus hypervariable region 1, but not the natural sequences, induce cross-reactive antibody response by genetic immunization

    No full text
    The hypervariable region 1 (HVR1) of the putative envelope protein E2 of hepatitis C virus (HCV) contains a principal neutralization epitope, and anti-HVR1 antibodies have been shown to possess protective activity in ex vivo neutralization experiments. However, the high rate of variability of this antigenic fragment may play a major role in the mechanism of escape from host immune response and might represent a major obstacle to developing an HCV vaccine. Thus, even if direct experimental evidence of the neutralizing potential of anti-HVR1 antibodies by active immunization is still missing, the generation of a vaccine candidate with a cross-reactive potential would be highly desirable. To overcome the problem of HVR1 variability, we have engineered cross-reactive HVR1 peptide mimics (mimotopes) at the N terminus of the E2 ectodomain in plasmid vectors suitable for genetic immunization. High levels of secreted and biologically active mimotope/E2 chimeras were obtained by transient transfection of these plasmids in cultured cells. All plasmids elicited anti-HVR1 antibodies in mice and rabbits with some of them leading to a cross-reacting response against many HVR1 variants from natural isolates. Epitope mapping revealed a pattern of reactivity similar to that induced by HCV infection, In contrast, plasmids encoding naturally occurring HVR1 sequences displayed either on full-length E2 in the context of the whole HCV structural region, or on a soluble, secreted E2 ectodomain, did not induce a cross-reacting anti-HVR1 response

    Mimotopes of the hepatitis C virus hypervariable region 1, but not the natural sequences, induce cross-reactive antibody response by genetic immunization

    No full text
    The hypervariable region 1 (HVR1) of the putative envelope protein E2 of hepatitis C virus (HCV) contains a principal neutralization epitope, and anti-HVR1 antibodies have been shown to possess protective activity in ex vivo neutralization experiments. However, the high rate of variability of this antigenic fragment may play a major role in the mechanism of escape from host immune response and might represent a major obstacle to developing an HCV vaccine. Thus, even if direct experimental evidence of the neutralizing potential of anti-HVR1 antibodies by active immunization is still missing, the generation of a vaccine candidate with a cross-reactive potential would be highly desirable. To overcome the problem of HVR1 variability, we have engineered cross-reactive HVR1 peptide mimics (mimotopes) at the N terminus of the E2 ectodomain in plasmid vectors suitable for genetic immunization. High levels of secreted and biologically active mimotope/E2 chimeras were obtained by transient transfection of these plasmids in cultured cells. All plasmids elicited anti-HVR1 antibodies in mice and rabbits with some of them leading to a cross-reacting response against many HVR1 variants from natural isolates. Epitope mapping revealed a pattern of reactivity similar to that induced by HCV infection. In contrast, plasmids encoding naturally occurring HVR1 sequences displayed either on full-length E2 in the context of the whole HCV structural region, or on a soluble, secreted E2 ectodomain, did not induce a cross-reacting anti-HVR1 response
    corecore