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Impaired beta-cell function and insulin resistance are key determinants 
of type 2 diabetes (T2D). Hyperglycemia in the fasting state is one of 
the criteria that defines T2D1, it can predict definitive clinical end-
points in nondiabetic individuals2,3 and, when corrected in subjects 
with T2D, may help prevent microvascular4,5 and long-term macro
vascular6,7 complications. To date, there are nearly 20 published loci 
reproducibly associated with T2D8; most of these are also associated 
with decreased insulin secretion9 due to defective beta-cell function 
or beta-cell mass. Association studies for diabetes-related quantitative 
traits in participants without diabetes have also identified loci influ-
encing fasting glucose levels, whose effects appear to be mediated by 
impairment of the glucose-sensing machinery in beta cells10–17.

We recently formed the Meta-Analyses of Glucose and Insulin-
related traits Consortium (MAGIC) to conduct large-scale meta-
analyses of genome-wide data for continuous diabetes-related traits 
in participants without diabetes15. We aimed to identify additional 
loci that influence glycemic traits in individuals free of diabetes and 
investigate their impact on related metabolic phenotypes. We were 
also interested in understanding variation in the physiological range 
of glycemia and evaluating the extent to which the same variants 
influence pathological fasting glucose variation and T2D risk. The 
initial MAGIC collaboration identified the fasting glucose- and  
T2D-associated locus in MTNR1B15, which was also reported by 
others16,17; this finding demonstrated that studies of continuous gly-
cemic phenotypes in nondiabetic individuals can complement the 
genetic analyses of diabetes as a dichotomous trait and can improve our 
understanding of the mechanisms involved in beta-cell function and 
glucose homeostasis. Here, we extend our previous approach by per-
forming meta-analyses of ~2.5 million directly genotyped or imputed 
autosomal SNPs from 21 genome-wide association studies (GWAS). 
These 21 cohorts include up to 46,186 nondiabetic participants of 

European descent informative for fasting glucose and 20 GWAS includ-
ing up to 38,238 nondiabetic individuals informative for fasting insu-
lin, as well as the surrogate estimates of beta-cell function (HOMA-B) 
and insulin resistance (HOMA-IR) derived from fasting variables by 
homeostasis model assessment18. Follow-up of 25 lead SNPs in up to 
76,558 additional individuals of European ancestry identified nine 
new genome-wide significant associations (empirically determined as 
P < 5 × 10−8)19 with fasting glucose and one with fasting insulin and 
HOMA-IR. Five of these loci also demonstrated genome-wide signifi-
cant evidence for association between the glucose-raising allele and 
T2D risk in up to 40,655 cases and 87,022 nondiabetic controls.

The wealth of loci newly discovered to be associated with fasting 
glucose and HOMA-B contrasts with the single new locus identified 
for fasting insulin and HOMA-IR and suggests that there is a differ-
ent genetic architecture for beta-cell function and insulin resistance.  
Furthermore, our data support the hypothesis that not all loci that 
influence glycemia within the physiological range are also associated 
with pathological levels of glucose and T2D risk.

RESULTS
Genome-wide association meta-analysis of glycemic traits
We conducted a two-stage association study in individuals of European 
descent (Online Methods, Supplementary Fig. 1 and Supplementary 
Table 1a,b). Because we sought to identify variants that influence fast-
ing glucose in the unaffected population, hyperglycemia in the diabetic 
range exerts deleterious effects on beta-cell function20,21 and treat-
ment can confound glucose and insulin measurements, we excluded 
individuals with known diabetes, those on anti-diabetic treatment, 
and those with fasting glucose ≥7 mmol/l. We combined data from  
21 stage 1 discovery GWAS for fasting glucose (n = 46,186) and  
20 GWAS for fasting insulin (n = 38,238), HOMA-B (n = 36,466)  
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Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses  
of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B)  
and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional 
subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR.  
These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, 
SLC2A2, PROX1 and C2CD4B ) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association 
of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes 
influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate 
that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are 
associated with a modest elevation in glucose levels but are not associated with overt diabetes.
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Replication studies and global meta-analysis for 25 loci
We carried forward to stage 2 all independent loci with association 
to any of the four traits at P < 2 × 10−5; we did not include SNPs in 
the known T2D genes TCF7L2 and SLC30A8, for which no further 
validation was sought (Table 1 and Supplementary Table 2). We also 
included the nominally associated top SNP from a likely biological 
candidate (IRS1, P = 10−4 for HOMA-IR) and a locus with P values 
that approached genome-wide significance in several stage 1 discovery 
cohorts (PLXDC2-NEBL), even though their overall stage 1 P values  
were > 2 × 10−5 (Table 1 and Supplementary Table 2). In total,  
25 loci were chosen for replication.

We directly genotyped 25 variants in 26 additional stage 2 studies 
with up to 63,850 nondiabetic participants of European ancestry for 
fasting glucose and 25 studies and up to 52,892 participants for fasting 
insulin, HOMA-IR and HOMA-B (Supplementary Table 1b and Online 
Methods). We also obtained in silico replication data for 12,708 additional 
individuals from seven studies for fasting glucose (9,372 participants and 
five studies for fasting insulin, HOMA-IR and HOMA-B), for a total of 
up to 76,558 individuals for fasting glucose and 62,264 for fasting insulin, 
HOMA-IR and HOMA-B in stage 2 association analyses.

Our combined stage 1 and 2 meta-analysis, including a total of up 
to 122,743 participants for fasting glucose (98,372 for fasting insu-
lin, HOMA-IR and HOMA-B), established genome-wide significant 
associations for nine new loci for fasting glucose and/or HOMA-B (in 
or near ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, 
GLIS3 and C2CD4B) and one for fasting insulin and HOMA-IR 
(upstream of IGF1) (Table 1 and Fig. 1a–j). Here, we replicate the 
recently reported associations of the loci DGKB-TMEM195 (with 
fasting glucose)24 and GCKR (with fasting glucose, fasting insulin 
and HOMA-IR)11,12,25 at levels that exceed the threshold for genome-
wide significance. Loci that had previously achieved genome-wide 
significant associations with fasting glucose (G6PC2, MTNR1B and 
GCK) were also confirmed (Table 1).

and HOMA-IR (n = 37,037) and analyzed associations for ~2.5 
million autosomal SNPs directly genotyped and imputed22,23 from 
HapMap CEU sample data, assuming an additive genetic effect for 
each of the 4 traits.

Inverse variance-weighted meta-analyses revealed 12 inde-
pendent loci associated with fasting glucose and/or HOMA-B at 
genome-wide significance levels (Table 1, Supplementary Table 2  
and Supplementary Fig. 2a,b). These included five newly discov-
ered associations for loci in or near ADCY5, MADD, ADRA2A, 
CRY2 and FADS1 (Table 1 and Fig. 1a–j), four previously reported 
fasting glucose-associated loci in or near GCK, GCKR, G6PC2 and 
MTNR1B, the recently reported24 locus in DGKB-TMEM195, 
and two loci in the T2D susceptibility genes TCF7L2 (rs4506565, 
r2 = 0.92 with the previously reported SNP rs7903146) and 
SLC30A8 (rs11558471, r2 = 0.96 with the previously reported SNP 
rs13266634). Seven additional loci had reproducible evidence for 
association with fasting glucose and/or HOMA-B across stud-
ies at the arbitrary summary threshold of P < 2 × 10−5, chosen 
to prioritize SNPs for follow-up (Table 1 and Supplementary 
Table 2). After excluding SNPs within the four previously discov-
ered genome-wide significant fasting glucose loci in GCK, GCKR, 
G6PC2 and MTNR1B, we still observed an excess of small P values 
compared to the distribution expected under the null hypothesis 
(Fig. 2a,b), suggesting that some of these additional loci are likely 
to represent new fasting glucose– and/or HOMA-B–associated loci 
that merit additional investigation.

Stage 1 analyses of fasting insulin and HOMA-IR revealed no loci 
that reached genome-wide significance, but there were six loci with 
consistent evidence for association across study samples at P < 2 × 
10−5 (Table 1, Supplementary Table 2 and Supplementary Fig. 2c,d). 
Comparison of the observed P values with the distribution expected 
under the null hypothesis showed an excess of small P values that 
warrant further investigation (Fig. 2c,d).

Table 1  SNPs associated with fasting glucose-related or insulin-related traits at genome-wide significance levels
Glucose/HOMA-B selected SNPs Fasting glucose HOMA-B

SNP Nearest gene(s)
Alleles  

(effect/other) Freq Discovery P
I2 estimate  

(P ) Global P
Joint  

analysis n Discovery P
I2 estimate  

(P ) Global P
Joint  

analysis n

rs560887 G6PC2 C/T 0.70 4.4 × 10–75 0.31 (0.18) 8.7 × 10–218 119,169 2.0 × 10–28 0.54 (0.01) 1.5 × 10–66 94,839

rs10830963 MTNR1B G/C 0.30 1.2 × 10–68 0.00 (1.00) 5.8 × 10–175 112,844 1.8 × 10–22 0.45 (0.03) 2.7 × 10–43 90,364

rs4607517 GCK A/G 0.16 4.5 × 10–36 0.19 (0.46) 6.5 × 10–92 118,500 7.5 × 10–8 0.36 (0.12) 1.8 × 10–16 94,112

rs2191349 DGKB-TMEM195 T/G 0.52 7.8 × 10–17 0.10 (0.68) 3.0 × 10–44 122,743 5.4 × 10–11 0.09 (0.71) 2.8 × 10–17 98,372

rs780094 GCKR C/T 0.62 2.5 × 10–12 0.00 (1.00) 5.6 × 10–38 118,032 0.25 0.32 (0.18) 3.2 × 10–4 93,990

rs11708067 ADCY5 A/G 0.78 8.7 × 10–9 0.04 (0.89) 7.1 × 10–22 118,475 2.2 × 10–4 0.37 (0.10) 2.5 × 10–12 94,212

rs7944584 MADD A/T 0.75 1.5 × 10–9 0.00 (1.00) 2.0 × 10–18 118,741 1.1 × 10–4 0.16 (0.51) 3.5 × 10–5 94,408

rs10885122 ADRA2A G/T 0.87 8.4 × 10–11 0.00 (1.00) 2.9 × 10–16 118,410 3.7 × 10–6 0.11 (0.66) 2.0 × 10–6 94,128

rs174550 FADS1 T/C 0.64 1.5 × 10–8 0.00 (1.00) 1.7 × 10–15 118,908 4.5 × 10–5 0.01 (0.99) 5.2 × 10–13 94,536

rs11605924 CRY2 A/C 0.49 1.5 × 10–9 0.00 (1.00) 1.0 × 10–14 116,479 5.2 × 10–6 0.03 (0.94) 3.2 × 10–5 92,326

rs11920090 SLC2A2 T/A 0.87 1.9 × 10–6 0.00 (1.00) 8.1 × 10–13 119,024 1.4 × 10–4 0.36 (0.11) 4.5 × 10–6 94,629

rs7034200 GLIS3 A/C 0.49 1.2 × 10–4 0.00 (1.00) 1.0 × 10–12 106,250 1.9 × 10–6 0.19 (0.46) 1.2 × 10–13 83,759

rs340874 PROX1 C/T 0.52 7.1 × 10–8 0.00 (1.00) 6.6 × 10–12 116,882 3.7 × 10–5 0.00 (1.00) 5.3 × 10–6 92,942

rs11071657 C2CD4B A/G 0.63 2.8 × 10–7 0.00 (1.00) 3.6 × 10–8 114,454 0.23 0.08 (0.73) 0.002 90,675

rs11558471 SLC30A8 A/G 0.68 2.6 × 10–11 – –  45,996 1.4 × 10–6 – – 36,283

rs4506565 TCF7L2 T/A 0.31 1.2 × 10–8 – – 46,181 1.4 × 10–6 – – 36,461

Insulin/HOMA-IR selected SNPs Fasting insulin HOMA-IR

rs780094 GCKR C/T 0.62 1.1 × 10–4 0.14 (0.57) 3.6 × 10–20 96,126 9.9 × 10–7 0.25 (0.32) 3.0 × 10–24 94,636

rs35767 IGF1 G/A 0.85 1.0 × 10–7 0.17 (0.50) 3.3 × 10–8 94,590 7.8 × 10–8 0.26 (0.28) 2.2 × 10–9 93,141

Directly genotyped and imputed SNPs were tested for association with fasting glucose, fasting insulin and homeostasis model assessment of beta-cell function (HOMA-B) and 
insulin resistance (HOMA-IR). Twenty-one discovery cohorts with genome-wide data were meta-analyzed (stage 1 discovery), and 25 SNPs were promoted for replication of the same 
trait in a set of 33 additional cohorts with in silico (n = 7) or de novo (n = 26) genotype data (n = 31 for fasting insulin, HOMA-B and HOMA-IR; for stage 2 replication P values and 
effect sizes, see Table 2). A joint analysis was then performed (global). Heterogeneity in the discovery sample was assessed using the I2 index48. Replication was not attempted for 
SNPs in two known T2D-associated genes (SLC30A8 and TCF7L2) that achieved genome-wide significance for fasting glucose in stage 1. Freq denotes the allele frequency of the 
glucose-raising allele. n = sample size. Note that the previously reported GCKR SNP has associations with glucose-related and insulin-related traits.
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We further conducted a global meta-analysis of cohort results 
adjusted for body mass index (BMI) to test whether these diabetes-
related quantitative trait associations may be mediated by associations 
with adiposity. The adjustment for BMI did not materially affect the 
strength of the associations with any of the traits (data not shown).

Effect size estimates for genome-wide significant loci
We restricted our effect size estimates (Table 2 and Supplementary 
Table 2) to the stage 2 replication samples (up to n = 76,558) to avoid 
inflation introduced by the discovery cohorts (the so-called ‘win-
ner’s curse’26). The previously identified loci in G6PC2, MTNR1B 
and GCK showed the largest effects on fasting glucose (0.075, 0.067 
and 0.062 mmol/l per allele, respectively), with the remaining loci 
examined showing smaller effects (0.008 to 0.030 mmol/l per allele; 
Table 2). The proportion of variance in fasting glucose explained by 
the 14 fasting glucose–associated loci with replication data (that is, 
all fasting glucose loci except for those on TCF7L2 and SLC30A8) 
ranged from 3.2%–4.4% in the six replication studies providing this 
information. Because results from our largest unselected commu-
nity-based cohort (Framingham) were on the lower bound of these 

estimates (3.2%), we felt reassured that the winner’s curse was not a 
major concern in this instance and selected the Framingham cohort  
to estimate the proportion of heritability explained and the geno-
type score. With a heritability estimate of 30.4% in the Framingham 
cohort, these 14 loci explain a substantial proportion (~10%) of the 
inherited variation in fasting glucose. Given the possibility that these 
same loci harbor additional independent variants (for example, those 
due to low-frequency alleles not captured by this analysis) that also 
influence fasting glucose27, this estimate of the heritability attribut-
able to these loci is likely to be conservative.

We estimated the combined impact of the 16 loci associated with 
fasting glucose (the 14 loci included in the effect size estimates plus 
those on TCF7L2 and SLC30A8) in some of the largest cohorts 
(Framingham, the Northern Finland Birth Cohort (NFBC) of 1966 
and the Atherosclerosis Risk in Communities (ARIC) study) by con-
structing a genotype score equal to the sum of the expected number 
of risk alleles at each SNP weighted by their effect sizes (see Online 
Methods). Fasting glucose levels were higher in individuals with 
higher genotype scores (Fig. 3), with mean differences of ~0.4 mmol/l 
(5.93 versus 5.51 mmol/l in NFBC 1966; 5.36 versus 5.03 mmol/l in 
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Figure 1  Regional plots of ten newly discovered genome-wide significant associations.  
(a) ADCY5. (b) MADD. (c) ADRA2A. (d) FADS1. (e) CRY2. (f) SLC2A2. (g) GLIS3. (h) PROX1.  
(i) C2CD4B. (j) IGF1. For each region, directly genotyped and imputed SNPs are plotted with 
their meta-analysis P values (as −log10 values) as a function of genomic position (NCBI Build 35).  
In each panel, the stage 1 discovery SNP taken forward to stage 2 replication is represented by 
a blue diamond (with global meta-analysis P value), with its stage 1 discovery P value denoted 
by a red diamond. Estimated recombination rates (taken from HapMap) are plotted to reflect the 
local LD structure around the associated SNPs and their correlated proxies (according to a white-
to-red scale from r2 = 0 to 1, based on pairwise r2 values from HapMap CEU). Gene annotations 
were taken from the UCSC genome browser.
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Framingham; 5.70 versus 5.29 mmol/l in ARIC) when comparing 
individuals with a score of 23 or higher (5.6% of the sample) to those 
with a score of 12 or lower (2.9% of the sample). The 0.4 mmol/l  
(7.2 mg/dl) difference between the two tails of the distribution of risk 
score in the population (top 5.6% compared to the bottom 2.9%) is of 
clinical relevance, as it represents a shift of approximately 25 centile 
points in the distribution of fasting glucose. Prospective evidence 
has shown that a difference of this magnitude in fasting glucose is 
associated with a relative risk of 1.54–1.73 for future T2D, account-
ing for other risk factors28. The impact of individual SNPs on fasting 
glucose in the combined discovery and replication samples is shown 
in Supplementary Figure 3.

We also analyzed data from 1,602 self-reported white European 
children aged 5.9–17.2 from two studies. Though directionally con-
sistent with observations in adults, some effect size estimates in these 
children were of smaller magnitude (data not shown). As in adults, the 
largest effect sizes were observed for risk alleles in GCK (b = 0.085,  
P = 1.2 × 10−5, n = 1,602), G6PC2 (b = 0.062, P = 1.9 × 10−4, n = 1,582)  
and MTNR1B (b = 0.033, P = 0.058, n = 1,309).

Impact of reproducibly associated loci on additional glycemic traits
We sought to investigate all 17 loci associated with fasting glucose, 
HOMA-B, fasting insulin or HOMA-IR at genome-wide significance 
for their effects on other continuous glycemic traits. Whereas most 
of the 16 loci associated with fasting glucose are also strongly associ-
ated with HOMA-B (Tables 1 and 2), the associations between fasting 
glucose loci and fasting insulin were weak at best; GCKR is the only 
locus reaching genome-wide significant associations for both fasting 
glucose and fasting insulin or HOMA-IR, with the glucose-raising  
C allele being associated with increased fasting insulin (global P = 3.6 ×  
10−20) and HOMA-IR (global P = 3.0 × 10−24). These patterns are 
consistent with the gross trait correlations obtained in Framingham 
for fasting glucose and HOMA-B (r = −0.43) and for fasting glucose 
and fasting insulin (r = 0.25).

Impairment of glucose homeostasis may be characterized by ele-
vated fasting glucose or fasting insulin, elevated glucose or insulin 
at 2 h after oral glucose tolerance test (OGTT), or elevated glycated 
hemoglobin (HbA1c). We tested associations of each of the 17 loci of 
interest in a subset of MAGIC cohorts with GWAS data informative 
for these traits. Because HbA1c is a measure of average glycemia over 
the preceding 2–3 months, we hypothesized that if an association of 
these loci with additional traits was present, it should be direction-
ally consistent. The three loci with the largest effect sizes on fasting 
glucose—G6PC2, MTNR1B and GCK—all showed genome-wide sig-
nificant and directionally consistent associations with HbA1c; DGKB-
TMEM195, ADCY5, SLC2A2, PROX1, SLC30A8 and TCF7L2 showed 
nominal (P < 0.05) evidence of directionally consistent association 
(Table 2). The fasting glucose–raising alleles at TCF7L2, SLC30A8, 
GCK and ADCY5 were associated (P < 0.0002) with increased 2-h 

glucose (Table 2); a parallel MAGIC project reports the genome-wide 
significant association with 2-h glucose of another ADCY5 SNP in 
strong linkage disequilibrium (LD) with our lead SNP (r 2 = 0.82)29. In 
contrast, and consistent with previous reports that the fasting glucose–
raising allele of GCKR is associated with greater insulin release during 
OGTT11,12,30, this allele was associated with lower 2-h glucose.

Testing of these loci for association with T2D as a dichotomous trait 
in up to 40,655 cases and 87,022 nondiabetic controls demonstrated 
that the fasting glucose–raising alleles at seven loci (in or near ADCY5, 
PROX1, GCK, GCKR and DGKB-TMEM195 and the known T2D 
genes TCF7L2 and SLC30A8) are robustly associated (P < 5 × 10−8)  
with increased risk of T2D (Table 2). The association of a highly  
correlated SNP in ADCY5 with T2D in partially overlapping  
samples is reported by our companion manuscript29. We found less 
significant T2D associations (P < 5 × 10−3) for variants in or near 
CRY2, FADS1, GLIS3 and C2CD4B (Table 2). These data clearly show 
that loci with similar fasting glucose effect sizes may have very different 
T2D risk effects (see, for example, ADCY5 and MADD in Table 2).

Given that several alleles associated with higher fasting glucose 
levels were also associated with increased T2D risk and that the T2D-
related genes TCF7L2 and SLC30A8 showed association with fasting 
glucose, we systematically investigated association of all established 
T2D loci with the same four fasting diabetes–related quantitative traits. 
We found directionally consistent nominal associations (P < 0.05) of 
T2D risk alleles with higher fasting glucose for 11 of 18 established 
T2D loci, including MTNR1B (Supplementary Table 3). These data 
demonstrate that a large T2D effect size does not always translate to 
an equivalently large fasting glucose effect in nondiabetic persons, as 
clearly highlighted when contrasting the remarkably small effects of 
TCF7L2 on fasting glucose compared to MTNR1B (Table 2).

Impact of new glycemic loci on other metabolic traits
Next, we used available GWAS results for additional metabolic 
phenotypes (BMI from GIANT31, blood pressure from Global 
BPgen32 and lipids from ENGAGE33) to assess the impact of the 
newly discovered glycemic loci on these traits. None of the newly 
discovered loci had significant (P < 0.01) associations with BMI or 
blood pressure (Table 3). Notably, the FADS1 glucose-raising allele 
was associated with increased total cholesterol (P = 2.5 × 10−6),  

70a b

c d

25

20

15

10

5

0

60

Fasting glucose HOMA-B

50

40

30

20

10

0
0 2 4

Expected (–log10 P value) Expected (–log10 P value)

O
bs

er
ve

d 
(–

lo
g 10

 P
 v

al
ue

)

O
bs

er
ve

d 
(–

lo
g 10

 P
 v

al
ue

)

6 8 0 2 4 6 8

25

20

15

10

5

0

Fasting insulin

Expected (–log10 P value)

O
bs

er
ve

d 
(–

lo
g 10

 P
 v

al
ue

)

0 2 4 6 8

25

20

15

10

5

0

HOMA-IR

Expected (–log10 P value)

O
bs

er
ve

d 
(–

lo
g 10

 P
 v

al
ue

)

0 2 4 6 8

Figure 2  Quantile-quantile plots. (a) Fasting glucose. (b) Beta-cell 
function by homeostasis model assessment (HOMA-B). (c) Fasting insulin. 
(d) Insulin resistance by homeostasis model assessment (HOMA-IR). In 
each plot, the expected null distribution is plotted along the red diagonal, 
the entire distribution of observed P values is plotted in black and a 
distribution that excludes the ten newly discovered loci shown in Figure 1  
is plotted in green. For fasting glucose and HOMA-B, the distribution that 
excludes the four genome-wide significant fasting glucose–associated 
loci reported previously (in GCK, GCKR, G6PC2 and MTNR1B) is plotted 
in blue. A comparison of the observed P values for each trait shows that 
fasting glucose and HOMA-B associations are much more likely to be 
detected than fasting insulin and HOMA-IR associations.
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low-density lipoprotein cholesterol (P = 8.5 × 10−6) and high-
density lipoprotein cholesterol (P = 2.9 × 10−5), but was associated 
with lower triglyceride levels (P = 1.9 × 10−6) (Table 3); a consist-
ent association of this locus with lipid levels has been previously 
reported34. The fasting glucose–﻿associated variant in MADD was 

not associated with lipid levels and is not in LD (r2 < 0.1) with 
a previously reported high-density lipoprotein cholesterol SNP 
(rs7395662)33, suggesting two independent signals within the same 
locus, one affecting lipid levels and the other affecting fasting glu-
cose levels (Table 3).

Potential functional roles of newly discovered loci
We investigated the likely functional role of genes mapping closest to 
the lead SNPs using several sources of data, including human disease 

Table 2  Association of newly discovered SNPs with glycemic traits in MAGIC and type 2 diabetes replication meta-analyses

SNP
Nearest  
gene(s)

Alleles  
(effect/
other)

Fasting  
glucose  
(mmol/l) HOMA-B

Fasting  
insulin (pmol/l) HOMA-IR HbA1c (%)

2-h glucose  
(mmol/l)

2-h insulin  
(pmol/l)

Type 2  
diabetesb

rs560887 G6PC2 C/T Effecta 0.075 (0.003) –0.042 (0.004) –0.007 (0.004) 0.006 (0.004) 0.032 (0.004) 0.017 (0.020) –0.031 (0.013) 0.97 (0.95–0.99)

P 8.5 × 10–122 7.6 × 10–29 0.11 0.16 1.0 × 10−17 0.41 0.01 0.012

rs10830963 MTNR1B G/C Effecta 0.067 (0.003) –0.034 (0.004) –0.006 (0.004) 0.004 (0.004) 0.024 (0.004) 0.056 (0.022) 0.034 (0.015) 1.09 (1.06–1.12)

P 1.1 × 10–102 1.1 × 10–22 0.14 0.37 3.0 × 10−9 0.01 0.02 8.0 × 10−13

rs4607517 GCK A/G Effecta 0.062 (0.004) –0.025 (0.005) 0.004 (0.006) 0.015 (0.006) 0.041 (0.005) 0.097 (0.026) –0.012 (0.015) 1.07 (1.05–1.10)

P 1.2 × 10–44 1.2 × 10–6 0.46 0.01 6.3 × 10−19 2.0 × 10−4 0.42 5.0 × 10−8

rs2191349 DGKB-

TMEM195

T/G Effecta 

P

0.030 (0.003) 

5.3 × 10–29

–0.017 (0.003) 

     6.4 × 10–8

–0.002 (0.003) 

  0.48

0.002 (0.004) 

   0.61

0.008 (0.003) 

0.01

0.000 (0.019) 

0.98

–0.006 (0.012) 

    0.60

1.06 (1.04–1.08) 

1.1 × 10−8

rs780094 GCKR C/T Effecta 0.029 (0.003) 0.014 (0.003) 0.032 (0.004) 0.035 (0.004) 0.004 (0.004) –0.091 (0.019) 0.000 (0.011) 1.06 (1.04–1.08)

P 1.7 × 10–24 1.4 × 10–5 3.6 × 10−19 5.0 × 10−20 0.32 1.4 × 10−6 1.00 1.3 × 10−9

rs11708067 ADCY5 A/G Effecta 0.027 (0.003) –0.023 (0.004) –0.011 (0.004) –0.006 (0.005) 0.015 (0.004) 0.094 (0.023) 0.008 (0.015) 1.12 (1.09–1.15)

P 1.7 × 10–14 3.6 × 10–8 0.01 0.16 5.1 × 10−4 6.6 × 10−5 0.60 9.9 × 10−21

rs7944584 MADD A/T Effecta 0.021 (0.003) –0.007 (0.004) 0.002 (0.004) 0.005 (0.004) 0.001 (0.004) –0.017 (0.022) –0.019 (0.013) 1.01 (0.99–1.03)

P 5.1 × 10–11 0.07 0.60 0.26 0.84 0.44 0.15 0.30

rs10885122 ADRA2A G/T Effecta 0.022 (0.004) –0.010 (0.005) 0.001 (0.005) 0.004 (0.005) 0.007 (0.005) 0.004 (0.030) –0.051 (0.019) 1.04 (1.01–1.07)

P 9.7 × 10–8 0.03 0.90 0.47 0.21 0.89 0.007 0.020

rs174550 FADS1 T/C Effecta 0.017 (0.003) –0.020 (0.003) –0.011 (0.004) –0.008 (0.004) 0.007 (0.004) 0.013 (0.019) –0.003 (0.012) 1.04 (1.02–1.06)

P 8.3 × 10–9 5.3 × 10–10 2.7 × 10−3 0.03 0.053 0.49 0.82 2.3 × 10−4

rs11605924 CRY2 A/C Effecta 0.015 (0.003) –0.005 (0.003) 0.001 (0.004) 0.003 (0.004) 0.001 (0.003) 0.023 (0.018) 0.006 (0.011) 1.04 (1.02–1.06)

P 8.1 × 10–8 0.13 0.73 0.34 0.72 0.20 0.62 1.7 × 10−4

rs11920090 SLC2A2 T/A Effecta 0.020 (0.004) –0.012 (0.005) 0.002 (0.005) 0.005 (0.005) 0.017 (0.005) 0.015 (0.027) –0.022 (0.016) 1.01 (0.99–1.04)

P 3.3 × 10–6 0.02 0.77 0.37 5.8 × 10−4 0.58 0.19 0.34

rs7034200 GLIS3 A/C Effecta 0.018 (0.003) –0.020 (0.004) –0.014 (0.004) –0.011 (0.004) 0.003 (0.003) 0.037 (0.018) 0.010 (0.011) 1.03 (1.01–1.05)

P 1.2 × 10–9 8.9 × 10–9 2.7 × 10−4 4.6 × 10−3 0.32 0.04 0.36 1.3 × 10−3

rs340874 PROX1 C/T Effecta 0.013 (0.003) –0.008 (0.003) –0.002 (0.004) 0.001 (0.004) 0.009 (0.004) 0.030 (0.020) –0.007 (0.012) 1.07 (1.05–1.09)

P 6.6 × 10–6 0.02 0.68 0.74 9.5 × 10−3 0.13 0.56 7.2 × 10−10

rs11071657 C2CD4B A/G Effecta 0.008 (0.003) –0.013 (0.004) –0.009 (0.004) –0.008 (0.004) 0.001 (0.004) –0.065 (0.020) –0.006 (0.013) 1.03 (1.01–1.05)

P 0.01 8.1 × 10–4 0.03 0.07 0.79 0.001 0.65 2.9 × 10−3

rs13266634 SLC30A8 C/T Effecta 0.027 (0.004) –0.016 (0.004) –0.004 (0.005) –0.0002 (0.005) 0.016 (0.004) 0.093 (0.022) –0.011 (0.015) 1.15 (1.10–1.21)c

P 5.5 × 10–10 2.4 × 10–5 0.44 0.97 3.3 × 10−5 2.0 × 10−5 0.47 1.5 × 10−8

rs7903146 TCF7L2 T/C Effecta 0.023 (0.004) –0.020 (0.004) –0.012 (0.004) –0.010 (0.005) 0.013 (0.003) 0.118 (0.021) 0.010 (0.013) 1.40 (1.34–1.46)c

P 2.8 × 10–8 1.4 × 10–7 0.004 0.03 1.8 × 10−4 2.6 × 10−8 0.42 2.2 × 10−51

rs35767 IGF1 G/A Effecta 0.012 (0.005) 0.009 (0.005) 0.010 (0.006) 0.013 (0.006) 0.010 (0.005) 0.027 (0.025) 0.015 (0.016) 1.04 (1.01–1.07)

P 0.01 0.09 0.10 0.04 0.050 0.28 0.33 6.6 × 10−3

Sample size  

for each trait

45,049– 

76,558

35,435– 

61,907

37,199– 

62,264

35,901– 

62,001

33,718– 

44,856

15,221– 

15,234

7,051– 

7,062

40,655  

cases/87,022  

controls

aPer-allele effect (SE) for quantitative traits was estimated from stage 2 replication samples for fasting glucose, homeostasis model assessment of beta-cell function (HOMA-B), 
fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR), and from discovery meta-analyses of MAGIC GWAS for glycated hemoglobin (HbA1c), 2-h 
glucose after an oral glucose tolerance test (BMI-adjusted) and 2-h insulin (BMI-adjusted). For the first four traits, the regression coefficients are obtained from the replication 
cohorts so as to avoid an overestimate of the effect size caused by the ‘winner’s curse’. Results from replication samples were unavailable for rs7903146 and rs13266634; thus, 
discovery meta-analysis results are shown for both SNPs for fasting glucose (n = 45,049–45,051), HOMA-B (n = 35,435–35,437), fasting insulin (n = 37,199–37,201) and 
HOMA-IR (n = 35,901–35,903). bReplication genotyping was undertaken in 27 independent type 2 diabetes (T2D) case/control samples for all except the TCF7L2 and SLC30A8 
signals. cAssociation with T2D for SNPs in TCF7L2 and SLC30A8 loci was estimated from the DIAGRAM+ meta-analysis for a total of 8,130 cases/38,987 controls. For these loci, 
we have included data on the most commonly associated SNPs with T2D in previously published data.
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Figure 3  Variation in levels of fasting glucose depending on the number  
of risk alleles at newly identified loci, weighted by effect size in an 
aggregate genotype score for the Framingham Heart Study. The bar plots 
show the average and standard error of fasting glucose in mmol/l for  
each value of the genotype score based on the regression coefficient  
(right y axis), and the histogram denotes the number of individuals in  
each genotype score category (left y axis). Comparable results were 
obtained for the NFBC 1966 and ARIC cohorts. On average, the range 
spans ~0.4 mmol/l (~7.2 mg/dl) from low to high genotype score.
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databases, evidence from animal models and bioinformatic analy-
ses (see Box 1, Online Methods and Supplementary Table 4). The 
newly discovered and previously established glycemic loci represent 
various biological functions: signal transduction (DGKB-TMEM195, 
ADCY5, FADS1, ADRA2A, SLC2A2, GCK, GCKR, G6PC2 and IGF1), 
cell proliferation and development (GLIS3, MADD and PROX1), 
glucose transport and sensing (SLC2A2, GCK, GCKR and G6PC2) 
and circadian rhythm regulation (MTNR1B and CRY2). All of these 
pathways represent further avenues for physiological characterization 
and possible therapeutic intervention for T2D. However, we note that 
other genes could be causal (Box 1 and Supplementary Table 4), and 
further experimental evidence will be needed to unequivocally link 
specific genes with phenotypes.

Expression analyses
We measured expression of the genes mapping closest to our lead 
SNPs (in DGKB-TMEM195, ADCY5, MADD, its neighboring gene 
SLC39A13 (a member of a family of zinc transporters mapping ~45 kb  
from the MADD lead SNP), ADRA2A, FADS1, CRY2, SLC2A2, GLIS3, 
PROX1 and C2CD4B) in human pancreas and other metabolically 
relevant tissues (Supplementary Fig. 4a). Although there was evidence 
of expression in human islets for nearly all genes tested (with the 
sole exception of TMEM195), we found that DGKB and MADD were 

most strongly expressed in brain, SLC2A2, FADS1, TMEM195 and 
PROX1 were most strongly expressed in liver and ADCY5 was most 
strongly expressed in heart, whereas SLC39A13, ADRA2A and CRY2  
were broadly expressed. Notably, C2CD4B was highly expressed in 
the whole pancreas with lower levels in isolated islets, suggesting 
that it is also present in exocrine cells. A duplicate experiment in a 
different laboratory obtained similar results (Supplementary Fig. 4b). 
We further examined expression of these transcripts in flow-sorted 
human beta cells from two separate individuals and documented 
beta-cell expression for all but TMEM195, with SLC39A13, CRY2, 
GLIS3 and PROX1 being particularly highly expressed in these cells 
(Supplementary Fig. 4c). Expression levels in metabolically relevant 
tissues for DGKB (beta cells) and TMEM195 (liver) provided equally 
credible evidence for their respective candidacies as the causal gene at 
these loci. Furthermore, based on its relatively high expression levels 
in beta cells, SLC39A13 (neighboring gene to MADD) constitutes a 
possible candidate gene that may merit further investigation.

Potential causal variants, eQTLs and copy number variants
Our results interrogate only a fraction of the common variants in 
any given genomic region; we therefore expect that for the major-
ity of the loci here described, the underlying causal variant has yet 
to be identified. Nevertheless, for some loci there are possible SNP 

Table 3  Association of newly discovered SNPs with related metabolic traits in other GWAS datasets

SNP
Nearest  
gene(s)

Alleles  
(effect/other) BMI (kg/m2)

Diastolic blood  
pressure (mm Hg)

Systolic blood  
pressure (mm Hg) Hypertension HDL LDL Total cholesterol Triglycerides

rs560887 G6PC2 C/T Effecta –0.013 (0.010) –0.146 (0.091) –0.105 (0.135) –0.023 (0.028) –0.004 (0.004) 0.01 (0.011) 0.019 (0.011) 0.004 (0.005)

P 0.18 0.12 0.46 0.41 0.32 0.35 0.10 0.52

rs10830963 MTNR1B G/C Effecta 0.002 (0.010) 0.034 (0.098) 0.088 (0.146) –0.003 (0.030) 0.005 (0.004) –0.015 (0.013) 0.002 (0.014) –0.004 (0.007)

P 0.86 0.74 0.56 0.91 0.26 0.25 0.88 0.58

rs4607517 GCK A/G Effecta 0.004 (0.011) –0.136 (0.111) –0.128 (0.165) –0.013 (0.033) –0.006 (0.005) 0.012 (0.014) –0.002 (0.015) 0.013 (0.007)

P 0.75 0.23 0.45 0.70 0.21 0.38 0.87 0.054

rs2191349 DGKB–TMEM195 T/G Effecta 0.001 (0.009) –0.075 (0.082) –0.046 (0.122) 0.007 (0.025) 0.002 (0.003) 0.009 (0.01) 0.015 (0.011) 0.004 (0.005)

P 0.95 0.37 0.71 0.79 0.64 0.40 0.18 0.44

rs780094 GCKR C/T Effecta 0.012 (0.009) 0.052 (0.084) 0.006 (0.124) 0.020 (0.025) 0.009 (0.003) 0.007 (0.01) –0.019 (0.011) –0.055 (0.005)

P 0.17 0.55 0.96 0.45 8.7x10−3 0.51 0.08 9.6 × 10−27

rs11708067 ADCY5 A/G Effecta –0.010 (0.011) –0.056 (0.104) 0.047 (0.156) 0.028 (0.031) 0.0004(0.004) –0.014 (0.013) –0.013 (0.013) –0.003 (0.006)

P 0.35 0.60 0.77 0.37 0.92 0.26 0.32 0.62

rs7944584 MADD A/T Effecta 0.023 (0.010) –0.208 (0.093) –0.170 (0.140) –0.038 (0.028) 0.007 (0.004) –0.013 (0.012) –0.016 (0.012) –0.007 (0.006)

P 0.02 0.03 0.24 0.18 0.06 0.27 0.18 0.26

rs10885122 ADRA2A G/T Effecta –0.021 (0.014) –0.079 (0.131) 0.168 (0.193) 0.073 (0.039) 0.01 (0.007) –0.019 (0.02) –0.02 (0.021) –0.02 (0.01)

P 0.14 0.56 0.40 0.07 0.15 0.34 0.33 0.04

rs174550 FADS1 T/C Effecta 0.003 (0.009) –0.208 (0.086) –0.108 (0.128) 0.013 (0.026) 0.014 (0.003) 0.046 (0.010) 0.052 (0.011) –0.025 (0.005)

P 0.73 0.02 0.42 0.62 2.9 × 10−5 8.5 × 10−6 2.5 × 10−6 1.9 × 10−6

rs11605924 CRY2 A/C Effecta 0.011 (0.009) 0.123 (0.082) –0.003 (0.123) 0.004 (0.025) 0.005 (0.004) 0.005 (0.011) 0.008 (0.011) –0.009 (0.005)

P 0.21 0.15 0.98 0.87 0.13 0.62 0.46 0.10

rs11920090 SLC2A2 T/A Effecta 0.010 (0.012) –0.034 (0.117) –0.023 (0.174) –0.030 (0.036) 0.003 (0.005) –0.004 (0.014) –0.009 (0.015) –0.015 (0.007)

P 0.42 0.78 0.90 0.41 0.60 0.81 0.57 0.04

rs7034200 GLIS3 A/C Effecta –0.002 (0.009) 0.093 (0.082) 0.087 (0.122) 0.006 (0.025) 0.0002(0.003) 0.015 (0.01) 0.028 (0.011) 0.005 (0.005)

P 0.86 0.27 0.49 0.80 0.94 0.15 8.3 × 10−3 0.37

rs340874 PROX1 C/T Effecta –0.007 (0.009) 0.113 (0.085) 0.093 (0.127) 0.029 (0.026) –0.007 (0.003) 0.009 (0.01) 0.003 (0.011) 0.007 (0.005)

P 0.46 0.20 0.48 0.27 0.04 0.39 0.81 0.19

rs11071657 C2CD4B A/G Effecta –0.006 (0.010) 0.132 (0.091) –0.007 (0.135) 0.020 (0.028) –0.004 (0.004) 0.012 (0.011) 0.002 (0.011) 0.006 (0.005)

P 0.54 0.16 0.96 0.49 0.22 0.28 0.86 0.30

rs13266634 SLC30A8 C/T Effecta –0.026 (0.011) –0.081 (0.094) –0.072 (0.139) 0.010 (0.029) 0.003 (0.004) 0.016 (0.011) 0.013 (0.011) 0.005 (0.005)

P 0.01 0.40 0.62 0.74 0.47 0.13 0.24 0.33

rs7903146 TCF7L2 T/C Effecta –0.033 (0.009) 0.026 (0.091) 0.025 (0.137) 0.003 (0.028) 0.005 (0.004) 0.007 (0.012) 0.007 (0.012) –0.006 (0.006)

P 4.4 × 10−4 0.78 0.86 0.92 0.22 0.53 0.55 0.31

rs35767 IGF1 G/A Effecta 0.003 (0.012) –0.102 (0.113) –0.078 (0.167) –0.005 (0.034) 0.003 (0.005) –0.009 (0.015) –0.012 (0.015) –0.002 (0.007)

P 0.81 0.38 0.65 0.87 0.56 0.52 0.43 0.84

n  28,225–

32,530

 28,591–

34,130

 28,557–

34,135

   8,145– 

9,553 cases

   21,045  17,521  17,529   21,104

   8,175–9,749 

controls

aPer-allele effect (s.e.m.). Results for BMI, blood pressure traits and lipid levels were kindly provided by the GIANT31, GlobalBPGen32 and ENGAGE33 consortia, respectively.
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candidates; in SLC2A2, the lead SNP (rs11920090) is in perfect LD 
(r 2 = 1.0) with rs5400 (stage 1 discovery association P = 5.9 × 10−6), 
which codes for the amino acid substitution T110I, predicted to be 
“possibly damaging” by PolyPhen35 and PANTHER (Pdel = 0.92)36. 
In GCKR, the lead SNP is in strong LD (r 2 = 0.93) with rs1260326, 
encoding P446L, a nonsynonymous variant previously associated with 
fasting glucose and HOMA-IR11,12,30 and predicted by PolyPhen to 
be “probably damaging.” A recent functional study has demonstrated 
that this variant indirectly leads to increased GCK activity, resulting in 
the observed effects on fasting glucose and triglyceride levels37. Both 
the SLC2A2 T110I and GCKR P446L substitutions were predicted to 
be “tolerated” by SIFT38, highlighting the difficulties in obtaining con-
sensus functional predictions from different informatic approaches.

We used publicly available expression quantitative trait locus (eQTL) 
datasets for liver39, cortex40 and Epstein-Barr virus–﻿transformed lym-
phoblastoid cell lines41 to explore additional possible causal mecha-
nisms by testing for association between replicated loci and mRNA 
expression levels of nearby genes (Online Methods). The lead SNP 
in FADS1, rs174550, is in strong LD with (r 2 = 0.80) and is in close 
proximity (130 bp) to rs174548, a SNP highly associated with FADS1 

mRNA expression levels in liver (P = 1.7 × 10−5) and with FADS2 
mRNA expression levels in lymphoblastoid cells (P = 3.1 × 10−4). 
The SNP rs174548 has also been associated (up to P = 4.5 × 10−8)  
with a number of serum glycerophospholipid concentrations in a 
GWAS investigating metabolomic profiles42, and rs174550 also 
showed strong associations (P < 5.2 × 10−7) with the same metabolites 
(data not shown). These results are substantiated by previous work 
associating SNPs in this region with the fatty acid composition of 
phospholipids43. The latter data suggest that the minor allele variant 
of rs174550 results in a reduced efficiency of the fatty acid delta-5  
desaturase reaction42. Finally, bioinformatic analysis identifies a 
perfect proxy, rs174545 (r 2 = 1.0 with rs174550), whose glucose-
raising allele abolishes a predicted target site for the miR-124 
microRNA (see Online Methods). Taken together, these data support 
the hypothesis that not only the abundance of fatty acids, but also 
their precise composition and degree of desaturation, may influence 
glucose homeostasis.

Although our study was not designed to explicitly investigate the 
impact of copy number variation on glycemic traits, we took advan-
tage of existing data44 to investigate whether any of our lead SNPs are 

Box 1:  Genes nearest to loci associated with fasting diabetes-related quantitative traits 

The DGKB-TMEM195 locus was recently reported to be associated with fasting glucose24; here we report genome-wide significant replication of that finding and 

evaluate the genes mapping closest to the lead SNP in further detail. DGKB encodes the β (1 of 10) isotype of the catalytic domain of diacylglycerol kinase, which 

regulates the intracellular concentration of the second messenger diacylglycerol. In rat pancreatic islets, glucose increases diacylglycerol49, which activates protein  

kinase C (PKC) and thus potentiates insulin secretion50. TMEM195 encodes transmembrane protein 195, an integral membrane phosphoprotein highly expressed in liver.

ADCY5 encodes adenylate cyclase 5, which catalyzes the generation of cAMP. Upon binding to its receptor in pancreatic beta cells, glucagon-like peptide 1 (GLP-1) 

induces cAMP-mediated activation of protein kinase A, transcription of the proinsulin gene and stimulation of insulin secretory processes51.

MADD encodes mitogen-activated protein kinase (MAPK) activating death domain, an adaptor protein that interacts with the tumor necrosis factor α receptor to 

activate MAPK. Both PKC and MAPK have been implicated in the proliferation of beta cells induced by GLP-1 (ref. 51), suggesting that DGKB and MADD may 

contribute to beta-cell mass and insulin secretion in this manner as well. Also in this region, SLC39A13 encodes a putative zinc transporter required for connec-

tive tissue development and BMP/TGF-β signaling52. NR1H3 encodes the liver X receptor alpha (LXRA) protein, which contains the retinoid response element. 

Glucose stimulates the transcriptional activity of LXR, which acts as a molecular switch that integrates hepatic glucose metabolism and fatty acid synthesis53.

ADRA2A encodes the α2A adrenergic receptor, which is expressed in beta cells and whose activation leads to an outward potassium current independent of the  

islet potassium-sensitive ATP (KATP) channel, thus possibly modifying insulin release54. Mice with null mutations display abnormal glucose homeostasis in  

addition to cardiac hypertrophy and abnormal heart rate and blood pressure.

FADS1 encodes fatty acid desaturase 1, which catalyzes the biosynthesis of highly unsaturated fatty acids from precursor essential polyunsaturated fatty acids. 

One such product is arachidonic acid; in rodent beta cells, arachidonic acid liberated by phospholipase A2 augments glucose-mediated insulin release55. Two 

other members of the same family, FADS2 and FADS3, also reside in this region. By directing fatty acids down this metabolic pathway, increased activity of these 

enzymes may lower circulating triglyceride concentrations.

CRY2 encodes cryptochrome 2, an integral component of the mammalian circadian pacemaker56. Mice with null mutations in this gene present with abnormal 

circadian rhythmicity and several metabolic abnormalities including impaired glucose tolerance, increased insulin sensitivity, decreased body weight and adipose 

tissue, and abnormal heart rate. Together with MTNR1B15–17, this is the second circadian gene associated with fasting glucose in humans, contributing further 

evidence to the emerging idea that this pathway regulates glucose homeostasis57. In the same region, MAPK8IP1 encodes the scaffolding protein JIP1. Cross-talk 

between JIP1 and JIP3 has been implicated in the regulation of ASK1-SEK1-JNK signaling during glucose deprivation58. A missense mutation in this gene (lead-

ing to a S59N amino acid substitution) segregates with diabetes in one family affected with a Mendelian form of the disease59.

SLC2A2 encodes the GLUT2 transporter responsible for transporting glucose into beta cells and triggering the glucose-mediated insulin secretion cascade. In 

humans, recessive mutations in this gene lead to Fanconi-Bickel syndrome, a rare disorder characterized by hepatorenal glycogen accumulation, proximal renal 

tubular dysfunction and impaired utilization of glucose and galactose60; mouse mutants also show hyperglycemia and abnormal glucose homeostasis61.

GLIS3 encodes the transcription factor GLIS family zinc finger 3 isoform, a Krüppel-like zinc finger protein that both activates and represses transcription and 

participates in beta-cell ontogeny62,63. Functional mutations in this gene cause a syndrome of neonatal diabetes and congenital hypothyroidism63. Polymorphisms 

within this gene have recently been associated with type 1 diabetes risk (t1dgc.org).

PROX1 encodes the prospero homeobox protein 1, a novel co-repressor of hepatocyte nuclear factor 4α64 that plays a crucial role in beta-cell development; muta-

tions in its target gene HNF4A cause maturity-onset diabetes of the young, type 1 (ref. 65).

C2CD4B (formerly FAM148B) encodes the nuclear localized factor 2 (NLF2). It is expressed in endothelial cells and upregulated by proinflammatory cytokines66. 

As shown here, it has a high level of expression in the pancreas, although its putative molecular connection with glucose homeostasis is presently unclear.

IGF1 encodes the insulin-like growth factor 1 and is the sole genome-wide significant locus associated with HOMA-IR in our study. Humans and mice null for 

IGF1 display abnormal glucose homeostasis, with insulin resistance, increased circulating insulin and insensitivity to growth hormone67.
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in LD with common, diallelic copy number polymorphisms (CNPs) 
mapping within a 1-Mb window. Of the fasting glucose loci, only 
DGKB-TMEM195 has a validated, common CNP affecting sequence 
within 1 Mb of the index SNP44. Despite the proximity of this CNP to 
the associated SNP (~25 kb), the CNP is essentially uncorrelated with 
the index SNP (r 2 = 0.01 in HapMap CEU) and is therefore unlikely 
to explain the observed association with fasting glucose level.

DISCUSSION
In this meta-analysis of 21 stage 1 discovery GWAS cohorts followed 
by targeted stage 2 replication of 25 loci in 33 additional cohorts (tota-
ling up to 122,743 nondiabetic participants), we report new genome-
wide significant associations of SNPs in or near ADCY5, MADD, 
ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B with 
fasting glucose and one SNP near IGF1 associated with fasting insulin 
and HOMA-IR. We have also confirmed associations of variants in 
GCK, GCKR, G6PC2 and MTNR1B with fasting glucose and achieved 
genome-wide significance for the recently reported DGKB-TMEM195 
locus24 and for variants in the known T2D-associated genes TCF7L2 
and SLC30A8. All of the fasting glucose–associated SNPs showed 
consistent nominal associations with HOMA-B, and those in GCK, 
G6PC2, MTNR1B, DGKB-TMEM195, ADCY5, FADS1 and GLIS3 did 
so at genome-wide significant levels. As previously reported11,12,30, 
GCKR is also associated with fasting insulin and HOMA-IR.

Notably, in addition to the established T2D-associated loci in 
TCF7L2, SLC30A8 and MTNR1B, five of the loci that are associated with 
elevated fasting glucose levels in nondiabetic individuals (in ADCY5, 
GCK, GCKR, PROX1 and DGKB-TMEM195) also increase the risk 
of T2D in separate T2D case-control studies. However, this overlap 
is incomplete and highlights the fact that the magnitude of the effect 
on fasting glucose is not predictive of the effect on T2D risk, as shown 
when comparing fasting glucose and T2D effect sizes for MTNR1B 
and TCF7L2, or for ADCY5 and MADD (Table 2). Loci on the latter 
two genes have similar effect sizes on fasting glucose and have similar 
allele frequencies, and yet the former is robustly associated with T2D 
risk (OR 1.12, P = 5.5 × 10−21) whereas the latter is not (OR 1.01,  
P = 0.3) in the same samples. This suggests that not all loci associated 
with fasting glucose within the ‘physiological’ range are also associated 
with ‘pathological’ fasting glucose levels and T2D risk. Thus, variation 
in fasting glucose in healthy individuals is not necessarily an endo
phenotype for T2D, which posits the hypothesis that the mechanism by 
which glucose is raised, rather than a mere elevation in fasting glucose 
levels, is a key contributor to disease progression. On the other hand, we 
cannot rule out the existence of separate T2D-protective variants within 
loci for which elevated fasting glucose does not progress to manifest 
T2D; we also cannot rule out the effect of cohort selection in the detec-
tion of the loci with variable effects on fasting glucose and T2D risk. 
Nevertheless, this work shows that targeting quantitative traits in GWAS 
searches can help identify genetic determinants of overt disease.

With regard to insulin resistance, our analyses resulted in only one 
new genome-wide significant locus associated with fasting insulin and 
HOMA-IR. The associated SNP rs35767 is 1.2 kb upstream of IGF1, 
raising the possibility that it may influence IGF1 expression levels (we 
have found no direct support for this notion in the limited eQTL data 
available). Although not reaching genome-wide significance, we note 
that SNP rs4675095 in IRS1 (the insulin receptor substrate-1 gene) 
was also associated with HOMA-IR (P = 4.6 × 10−3), which, given 
IRS1’s excellent biological credentials, will warrant further investiga-
tion. This SNP is not in LD with the widely studied missense SNP sub-
stitution G972R (rs1801278), nor is it in LD with the newly discovered 
T2D SNP rs2943641 (ref. 45), whose C risk allele was only nominally 

associated with increased fasting insulin (P = 0.02) and HOMA-IR  
(P = 0.04) in our discovery dataset. The previously reported asso-
ciations of SNPs in PANK1 with fasting insulin24 did not receive 
strong support in our discovery cohorts (P = 0.04 and P = 0.17 for 
rs11185790 and rs1075374, respectively).

Notably, our large-scale meta-analyses produced more than a dozen 
robust associations with fasting glucose and only two with fasting 
insulin and HOMA-IR (GCKR and IGF1). Although the somewhat 
smaller sample size for the insulin analysis may have contributed to 
this discrepancy, a comparison of the similarly powered HOMA-B 
and HOMA-IR analyses reveals associations with HOMA-B several 
orders of magnitude more significant than those seen with HOMA-
IR (Fig. 2). Because insulin itself is a component of the numerator 
in both measures, one cannot attribute this discrepancy to technical 
differences in insulin measurements across cohorts. Similarly, because 
the quantile-quantile plots are very similar for fasting insulin and 
HOMA-IR, we do not believe that the use of a mathematical formula 
(as was used with HOMA-IR) rather than a direct measurement (as 
was used with fasting insulin) has affected our analyses substantially.  
HOMA-B and HOMA-IR have comparable heritability estimates 
(0.26 and 0.27 in the Framingham Heart Study, respectively), and 
their correlation is substantial (r = 0.55 in the Framingham Heart 
Study). Thus, not only may there be a difference in the identity of 
specific genetic determinants for each trait46, but the genetic archi-
tecture may be distinct for each trait, with more modest effects, fewer 
loci, rarer variants, or a stronger environmental modification under
lying HOMA-IR. In addition, HOMA-IR (which is composed of fast-
ing values) is an imperfect estimate of global insulin resistance, as it 
addresses mostly hepatic sensitivity to insulin and is partially affected 
by beta-cell function. The heritability of HOMA-IR is lower than the 
heritability for insulin sensitivity derived from the minimal model47.  
Exploration of gene × environment interactions and analysis of 
datasets that include 2-h glucose and insulin values may reveal other 
genetic factors that increase insulin resistance in humans29.

In conclusion, our large-scale meta-analysis of GWAS has identified 
ten new loci associated with glycemic traits whose in-depth physiological 
investigation should further our understanding of glucose homeostasis 
in humans and may reveal new pathways for diabetes therapeutics.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Cohort description. The consortia participating in MAGIC contributed a 
maximum total of 122,743 individuals. The stage 1 discovery set included 
36,466–46,186 individuals (depending on trait) from 17 population-based 
cohort studies and four case-control studies. The stage 2 replication set 
included up to 76,558 individuals from 33 sample collections, including  
28 population-based and 5 case-control collections. Detailed information on 
all studies is provided in Supplementary Table 1a (stage 1 discovery) and 1b 
(stage 2 replication). All participants were adults of white European ancestry 
from the United States or Europe. Individuals were excluded from the analysis 
if they had a physician diagnosis of diabetes, were on diabetes treatment (oral 
or insulin) or had a fasting plasma glucose ≥7 mmol/l. Some individuals with 
fasting glucose <7 mmol/l but who would have tested abnormally after an oral 
glucose challenge could have been included; we estimated this number to be as 
low as <1% in the Framingham Heart Study and 1.6% in Inter99, two popula-
tion cohorts in which all relevant data were available. Individual studies applied 
further sample exclusions, including pregnancy, non-fasting individuals, type 1  
diabetes, or outliers ±3 s.d. of distribution for either fasting glucose or fasting 
insulin, as detailed in Supplementary Table 1a and 1b. Individual stage 1 dis-
covery cohort sizes ranged between 458 and 6,479 samples; stage 2 replication 
cohorts ranged between 554 and 8,010 samples. All studies were approved by 
local research ethic committees, and all participants gave informed consent.

Type 2 diabetes association. The association analysis of lead SNPs with 
T2D as a dichotomous trait was carried out under the additive genetic 
model in 27 case-control cohorts totaling 40,655 cases and 87,022 controls 
of European descent. These included 8,130 cases and 38,987 controls from 
eight DIAGRAM+ Consortium studies and 32,525 additional T2D cases 
and 48,035 additional controls from 19 cohorts genotyped de novo, listed 
as cohort (n cases/n controls): FUSION_stage2 (1,203/1,261), METSIM_CC 
(854/3,469), Addition/Ely (892/1,612), Cambridgeshire Case Control Study 
(541/527), Norfolk Diabetes Case Control Study (6,056/6,428), deCODE 
(1,465/23,194), DGDG (690/730), DGI (1,022/1,075), ERGO (1,178/4,761), 
EUROSPAN (268/3,710), FUSION (1,161/1,174), KORA S3 (433/1,438), T2D 
Wellcome Trust Case Control Consortium (1,924/2,938), HPFS (1,146/1,241), 
Nurses’ Health Study (1,532/1,754), Danish (3,652/4,992), KORA_replication 
consisting of cases from KORAS1-S4 and the Augsburg Diabetes Family 
Study (ADFS) and controls from KORA S4 (1,047/1,491), OxGN_58BC 
(UKRS2) (612/1,596), UKT2DGC (4,979/6,454), Framingham Heart 
Study_CC (674/7,664), NHANES (289/1,219), Partners/Roche (534/649), 
Umeå (1,327/1,424), French_CC (2,155/1,862), GCI Poland_DGI_Stage2 
(969/969), GCI_US_DGI_Stage2 (1,191/1,171) and MDC_MDR_DGI_Stage2 
(2,814/3,234). According to the best sample-specific model, in some cohorts, 
age and BMI were used as covariates for adjustment of the case-control asso-
ciation. The meta-analysis of the cohort-specific summary statistics (odds 
ratios and 95% confidence intervals) was performed using a fixed effects 
inverse-variance approach with GWAMA (see URLs).

Quantitative trait measurements. Fasting glucose (in mmol/l) was measured 
from fasting whole blood, plasma or serum or a combination of these. Whole-
blood fasting glucose levels were corrected to plasma fasting glucose using a correc-
tion factor of 1.13. Fasting insulin was measured as described in Supplementary 
Table 1a and 1b for each of the cohorts. Indices of beta-cell function (HOMA-B) 
and insulin resistance (HOMA-IR) were derived from paired fasting glucose and 
insulin measures using the homeostasis model assessment18.

Genotyping, imputation and quality control. Genotyping of individual 
cohorts was carried out using commercial genome-wide arrays as detailed in 
Supplementary Table 1a and 1b. For genome-wide SNP sets, different criteria 
were used to filter out poor-quality SNPs and samples before imputation. 
Criteria generally applied for exclusion of samples were (i) call-rate <0.95, 
(ii) individuals with heterozygosity outside the population-specific bounds 
and (iii) ethnic outliers. Criteria generally applied for exclusion of SNPs were 
(i) minor allele frequency (MAF) <0.01, (ii) Hardy-Weinberg equilibrium  
P < 10−4 or 10−6 and (iii) call-rate <0.95. Imputation of additional auto-
somal SNPs from the HapMap CEU reference panel was performed  
using the software MACH23, IMPUTE22 or BIMBAM68 with parameters and 

pre-imputation filters as specified in Supplementary Table 1a and 1b. SNPs 
were also excluded if the cohort-specific imputation quality as assessed by 
r2.hat was <0.3 (MACH) or proper-info was <0.4 (IMPUTE) or observed/
expected dosage variance was <0.3 (BIMBAM), or if their mapping and/or 
strand annotation was ambiguous. In total, up to 2.5 million genotyped or 
imputed autosomal SNPs were considered for meta-analysis. SNPs were consid-
ered for meta-analysis if they were available for at least 20% of maximum avail-
able sample size or if ≥10,000 individuals were informative for each SNP.

Statistical analyses. We excluded from analysis people with diabetes (those on 
diabetes treatment or with fasting glucose ≥7 mmol/l), non-fasting participants 
and pregnant women. In each cohort, we used log-transformed trait values 
for fasting insulin, HOMA-IR and HOMA-B and untransformed fasting glu-
cose as the dependent variable in linear regression models that included terms 
for sex, age (except NFBC 1966, where all subjects were 31 years old), study 
site (if applicable), geographical covariates (if applicable) and age squared 
(Framingham only) to assess the association of additively coded genotypes 
with trait values. Association testing was performed using software that takes 
genotype and imputation uncertainty into account, using a missing-data 
likelihood test implemented in SNPTEST22 or by using allele dosages in the 
linear regression model in MACH2QTL23, GenABEL69 or lmekin from the R 
kinship package70. Regression estimates for the effect of the additively coded 
SNP were pooled across studies in a meta-analysis using a fixed effect inverse-
variance approach71. The individual cohort results, but not the final meta-
analysis results, were corrected for residual inflation of the test statistic using 
the genomic control method72. Final GC values were 1.05 for fasting glucose, 
1.046 for HOMA-B, 1.04 for HOMA-IR and 1.041 for fasting insulin.

Replication SNP selection and analysis. Twenty-five lead SNPs from among 
the most significant association results in the stage 1 discovery meta-analyses 
were selected for replication. To account for the correlation between traits and 
to ensure independent signals, highly significant associations detected in two 
or more traits were selected only once. All selected loci had an r 2 < 0.5 with the 
nearest other selected loci. From each unique locus, the SNP with the smallest 
P value was chosen. All SNPs had a minimum sample size of at least 80% of 
the overall discovery sample. Variants known to be associated with T2D (in 
SLC30A8 and TCF7L2) and reaching the genome-wide significance threshold  
(P < 5 × 10−8) were not included in the replication list. SNPs were also selected 
on the basis of low heterogeneity between studies, although loci with biologic 
plausibility were selected even if there was some evidence of heterogeneity. 
Seventeen SNPs from the glucose and HOMA-B analyses and eight SNPs from 
the insulin and HOMA-IR analyses were taken for stage 2 replication. Although 
previously described, variants in G6PC2, GCK, GCKR and MTNR1B were 
selected for replication to serve as ‘positive controls’ in all study samples. Up to 
four alternate proxy SNPs (maximizing LD with the index SNP) were selected 
for each locus to accommodate the capacities of different platforms. In the 
cases where index SNPs failed in the initial stage of genotyping, replication 
results were obtained for proxy SNPs in strong LD with the original index SNP 
whenever possible. SNPs with Hardy-Weinberg equilibrium P values ≤0.001 
were excluded. In cases where more than one proxy SNP was genotyped but 
the index SNP was unavailable, the proxy SNP’s LD with the index SNP and 
its call rate was used to select the SNP with the best-quality genotyping to be 
included in the meta-analysis.

Genotype data for 25 signals or proxies were obtained from 33 independent 
replication cohorts, including both in silico data from pre-existing GWAS (8) 
and de novo genotyping (25). Phenotype definition and association testing 
between fasting traits and these 25 SNPs was performed in the same manner  
in each cohort. The inverse variance method was then applied to derive 
pooled effect estimates from the stage 2 replication samples using METAL 
(see URLs) and GWAMA software. We then carried out a pooled analysis of the 
stage 1 discovery cohorts and stage 2 replication samples to determine which 
SNPs reached genome-wide significance, as determined by a P < 5 × 10−8.  
Heterogeneity was assessed using the I2 index48.

Notes on replication genotyping. Amish. The Amish trait data is reported 
for the Heredity and Phenotype Interaction Heart Study (HAPI), Amish 
Family Longevity Study (LS), Amish Family Diabetes Study (AFDS), Amish 

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.



Nature Genetics doi:10.1038/ng.520

Family Calcification Study (AFCS) and Pharmacogenomics of Anti-Platelet 
Intervention (PAPI) Study. All studies genotyped 15 SNPs (rs10830963, 
rs4607517, rs11605924, rs11708067, rs1416802, rs588262, rs4675095, rs6947696, 
rs4912494, rs11920090, rs174550, rs7034200, rs4243291, rs457420, rs1881413). 
Other SNPs were typed on different sample subsets: AFDS only (rs2191349, 
rs10493846); HAPI only (rs560887); HAPI, LS and Pharmacogenomics of 
Anti-Platelet Interaction study (PAPI) (rs780094, rs6479526, rs340835, 
rs11167682); HAPI, LS, AFDS, PAPI (rs4918635, rs855228); HAPI, LS and 
AFCS (rs11039149). The genotyping statistics in Supplementary Table 1b are 
reported for the AFDS + HAPI + LS cohorts.

FUSION stage 2. The FUSION stage 2 cohort includes some Health 2000 
samples, none of which overlap with the Health 2000 cohort.

SNP score. For the 16 SNPs reaching genome-wide significance of association 
(either in the discovery stage alone or in the combined replication and discov-
ery meta-analysis), we defined a risk score as the weighted sum of the number 
of expected risk alleles, where the sum of the weights was set to the number of 
SNPs (16) and the weights were proportional to the estimate of the effect size 
for each SNP. Mean fasting glucose levels according to the number of weighted 
risk alleles were computed in some of the largest cohorts (Framingham, ARIC, 
NFBC 1966) with all 16 SNPs available (genotyped or imputed).

Bioinformatic analysis and functional annotation. To perform a prelimi-
nary assessment of the underlying functionality at the associated loci, we 
first expanded the set of SNPs to include those in strong LD with the index 
SNP (defined as pairwise r 2 >0.8 according to HapMap Phase II CEU data). 
We then mapped the genomic locations of all the SNPs in this expanded set 
to several non-mutually-exclusive genomic annotation sets: nonsynony-
mous sites, splice sites, intergenic regions, 5′ UTR, 3′ UTR and introns from 
dbSNP version 129 (see URLs section for URLs of this and other software 
mentioned in this paragraph); 1-kb and 5-kb regions upstream of transcrip-
tion start sites from Ensembl version 49; intergenic predicted transcrip-
tion factor binding sites, CpG islands, ORegAnno elements, Encode region 
ancestral repeats, EvoFold elements, multispecies conserved sequences  
and positively selected gene regions from the University of California 
Santa Cruz human table browser; predicted microRNA target sites from 
TargetScan 4.2; validated enhancers from the Vista Enhancer Browser; pre-
dicted cis-regulatory modules from the PreMod database; and validated 
noncoding RNAs from RNAdb. The potential functional effect of nonsyn-
onymous substitutions were evaluated using three prediction programs: 
SIFT, PolyPhen and PANTHER.

GRAIL. We used GRAIL (see URLs) to examine the putative relationship 
between candidate genes at validated loci based on concomitant appearance in 
published scientific text. GRAIL is a bioinformatic annotation tool that, given 
several genomic regions or SNPs associated with a particular phenotype or dis-
ease, searches for similarities in the published scientific text among the associated 
genes73. It scores regions for functional relatedness by defining associated regions 
based on the interval between recombination hotspots flanking furthest neigh-
boring SNPs with r 2 >0.5 to the index SNP, and identifies overlapping genes in 
that region. Based on textual relationships between genes (as determined from a 
download of PubMed abstracts on 16 December 2006), GRAIL assigns a P value 
to each region suggesting its degree of functional connectivity, and picks the best 
candidate gene after taking into account multiple comparisons.

We considered the following SNPs and candidate genes: rs10830963 
(MTNR1B), rs2191349 (DGKB), rs4607517 (GCK), rs11920090 (SLC2A2), 
rs11708067 (ADCY5), rs560887 (G6PC2), rs780094 (GCKR), rs11605924 
(CRY2), rs7034200 (GLIS3), rs340874 (PROX1), rs10885122 (ADRA2A), 
rs7944584 (NR1H3), rs174550 (FEN1, FADS1, C11orf9, C11orf10, FADS2) 
and rs11071657 (C2CD4B). In addition, the following keywords describing 
functional connections were used: “glucose”, “diabetes”, “islet”, “diacylglycerol”, 
“circadian”, “insulin”, “drosophila”, “liver”, “clock”, “cyclase”, “pancreatic”, “ade-
nylyl”, “memory”, “beta”, “mice”, “islets”, “phosphatase”, “camp”, “light”, “activ-
ity”. A total of 7 genes (MTNR1B, DGKB, GCK, SLC2A2, ADCY5, G6PC2 and 
GCKR) out of 14 had a significant association with functional connectivity 
(at P < 0.1) compared to 1.4 expected under the null, demonstrating that this 
gene set is enriched in relationships with each other.

eQTL analysis. The validated association signals were searched for previ-
ous evidence of expression quantitative trait loci (eQTLs) using several data 
sources. Liver eQTL association results were obtained from Schadt et al.39. 
Cortex eQTL association results were obtained from Myers et al.40. Epstein-
Barr virus-transformed lymphoblastoid cell eQTLs from ref. 41 were retrieved 
using the mRNA by SNP browser (see URLs). For each region, we limited our 
analysis to cis eQTLs given the difficulty of reliably interpreting trans effects. 
Genes or SNPs within 1 Mb from the lead SNP were considered. The r2 values 
between the lead SNPs and eQTL SNPs were retrieved from the HapMap Phase 2  
data (CEU Panel), and only SNPs with r2 >0.6 were considered.

Of the 12 SNPs showing association with liver and located at < 1 Mb from 
the lead SNP, five had no r2 data in HapMap and were located at large distances 
from the MAGIC lead SNP (mean 320 kb, range 48-725 kb). Of the remaining 
seven, rs174548 at the FADS1 (fatty acid desaturase 1, PeQTL = 1.74 × 10−5) 
locus was located 130 bp away from the lead SNP rs174550 and in strong LD 
(pairwise r2 = 0.8). All the remaining SNPs did not fit our criteria for selec-
tion, although we note that a second lead SNP (rs780094 at GCKR) was also 
moderately associated (r2 = 0.49, distance = 74 kb) with a strong effect eQTL 
(rs4665969 at IFT172, PeQTL = 3.97 × 10−23). For circulating lymphoblastoid 
cells, the only cis effect fitting our criteria was observed for the MAGIC SNP 
rs174550 (FADS1), which was located 24 kb from a known eQTL centered on 
the FADS2 gene (PeQTL = 3.1 × 10−4). Finally, for cortex, the only eQTL was 
found at four SNPs within LOC131076 (rs6769837, rs7648255, rs12636058, 
rs6438726), all located >870 kb from the MAGIC lead SNP (rs11708067 at 
ADCY5, LD metrics not available).

Gene expression studies. Adult total RNA samples, except pancreatic islets 
and flow-sorted beta cells, were purchased from Clontech (Clontech-Takara 
Bio Europe, Saint-Germain-en-Laye, France). Adult human islets (n = 2) 
were available through existing collections at Oxford University and were 
obtained with full ethical consent. Flow-sorted beta cells were obtained from 
two brain-dead adult donors (preparations >92% insulin-positive cells), in 
accordance with French legislation and the local ethical committee, as previ-
ously described74.

Tissue panel (Oxford). Samples were treated with DNase I (Ambion) to 
ensure that residual genomic contamination was removed. For each tissue,  
1 µg of total RNA was used to generate cDNA by random primed first strand 
synthesis (Applied Biosystems) according to the manufacturer’s protocol. 
Reverse transcription was also performed on all samples in the absence of the 
enzyme reverse transcriptase, and these samples were used as negative controls. 
Primers were designed to cover all RefSeq transcripts. Resulting cDNA for each 
tissue was diluted 1:100 and 4 µl used in a 10 µl qRT-PCR reaction with 5.5 µl 
gene expression master mix (Applied Biosystems) and 0.5 µl gene specific assay 
(Applied Biosystems). All samples were run in triplicate. A standard curve was 
generated by pooling 1 µl of each cDNA and serially diluting (1:50, 1:100, 
1:200, 1:400, 1:800) and running as above. Expression levels were determined 
with respect to the mean of four endogenous controls (β-actin, B2M, HPRT, 
TOP1) and normalizing to the mean of the 1:100 standard for the assay of 
interest. For ease of presentation, the maximum gene expression has been set 
to equal 1 and all other tissue expressions reported as a fraction of this.

Tissue panel (Cambridge). Adult human total RNA samples (cerebellum, 
cortex, spleen, pancreas, lung, kidney, liver, skeletal muscle, heart, testes, 
adipocyte and total brain) were obtained from Clontech. Random-primed 
first-strand cDNA synthesis was performed with 100 ng RNA using Super 
Script II (Invitrogen) according to manufacturer’s instructions. Primers were 
design to cover the majority of protein coding transcripts. For the standard 
curve, 200 ng of a pool of all RNA samples was amplified using the same 
protocol. The resulting cDNA for each tissue was diluted fivefold and 5 µl  
of each sample were used in a 12 µl SYBR Green PCR Master Mix (Applied 
Biosystem). The cDNA for the standard curve was diluted twofold and used 
as above. Primers (SIGMA) were designed to anneal to all annotated iso-
forms of any given gene. Quantitative PCR reactions were done in triplicate 
on an ABI 7900HT (Applied Biosystems). Expression levels were calculated 
from their average crossing points, expressed relative to the control gene 
Top1 (encoding topoisomerase 1), and normalized to gene-specific expres-
sion in pancreas. For the purpose of presentation, for each gene the maximal 
expression was set to equal one and the rest reported as fraction of this 
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number. The results of these duplicate experiments, which largely confirm 
those reported in the text, are shown in Supplementary Figure 3.

Flow-sorted beta cells (Lille). Samples were treated with DNase I (Ambion) 
to ensure that residual genomic contamination was removed. For each tissue, 
1 µg of total RNA was used to generate cDNA by random primed first strand 
synthesis (Applied Biosystems) according to the manufacturer’s protocol. 
Reverse transcription was also performed on all samples in the absence of the 
enzyme reverse transcriptase, and these samples were used as negative con-
trols. Total RNA was extracted using Nucleospin RNA II kit (Macherey Nagel) 
according to the manufacturer’s instructions. Resulting cDNA for each tissue 
was diluted 1:10, and 4 µl was used in a 20-µl qRT-PCR reaction with 10 µl 
gene expression master mix (Applied Biosystems) and 1 µl gene-specific assay 
(Applied Biosystems). Data is presented with the most expressed gene (GLIS3) 
normalized to 1 and all other genes reported as a fraction of this number.

URLs. GWAMA, http://www.well.ox.ac.uk/gwama/index.shtml; METAL, 
http://www.sph.umich.edu/csg/abecasis/Metal/index.html; dbSNP version 
129, http://www.ncbi.nlm.nih.gov/projects/SNP/; Ensembl version 49, http://
www.ensembl.org; University of California Santa Cruz human table browser, 
http://genome.ucsc.edu/cgi-bin/hgTables; TargetScan 4.2, http://www. 
targetscan.org; Vista Enhancer Browser, http://enhancer.lbl.gov; PreMod 
database, http://genomequebec.mcgill.ca/PreMod; RNAdb, http://research.

imb.uq.edu.au/rnadb/; SIFT, http://blocks.fhcrc.org/sift/SIFT.html; PolyPhen, 
http://genetics.bwh.harvard.edu/pph/; PANTHER, http://www.pantherdb.org/
tools/csnpScoreForm.jsp; GRAIL (Gene Relationships Across Implicated Loci), 
http://www.broad.mit.edu/mpg/grail; mRNA by SNP browser, http://www.
sph.umich.edu/csg/liang/asthma/.
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