6,114 research outputs found
A quantum model for collective recoil lasing
Free Electron Laser (FEL) and Collective Atomic Recoil Laser (CARL) are
described by the same model of classical equations for properly defined scaled
variables. These equations are extended to the quantum domain describing the
particle's motion by a Schr\"{o}dinger equation coupled to a self-consistent
radiation field. The model depends on a single collective parameter
which represents the maximum number of photons emitted per particle. We
demonstrate that the classical model is recovered in the limit , in which the Wigner function associated to the Schr\"{o}dinger equation
obeys to the classical Vlasov equation. On the contrary, for ,
a new quantum regime is obtained in which both FELs and CARLs behave as a
two-state system coupled to the self-consistent radiation field and described
by Maxwell-Bloch equations
Annual Report Readership: A Study of an Agricultural Supply Cooperative
Recent corporate collapses have focussed attention on the (un)reliability of financial information. However, although the agricultural sector, which is significant globally, is run primarily using the cooperative form, there is scant research on these users' perception of financial information. Therefore this paper examines members' readership and understanding of the annual reports of a large, fertiliser cooperative. The findings show that there is a lack of readership of the annual report, due to a lack of understanding and a lack of time. A minority of non-readers trust directors to "do a good job". Preparers of information should focus on making reports more user-friendly and evidence suggests that financial information could be released more strategically using other sources of communication, namely other print media and the internet.cooperatives, annual reports, readership, understanding, Agribusiness,
Willingness-to-Pay for Improved Air Quality in Hamilton-Wentworth: A Choice Experiment
Prepared for Hamilton-Wentworth Air Quality Initiative pursuant to a memorandum of understanding among McMaster University, the Ontario Ministry of Environment and Energy and the Regional Municipality of Hamilton-Wentworth, dated November 5, 1996.
The Semiclassical and Quantum Regimes of Superradiant Light Scattering from a Bose-Einstein Condensate
We show that many features of the recent experiments of Schneble et al. [D.
Schneble, Y. Torii, M. Boyd, E.W. Streed, D.E. Pritchard and W. Ketterle,
Science vol. 300, p. 475 (2003)], which demonstrate two different regimes of
light scattering by a Bose-Einstein condensate, can be described using a
one-dimensional mean-field quantum CARL model, where optical amplification
occurs simultaneously with the production of a periodic density modulation in
the atomic medium. The two regimes of light scattering observed in these
experiments, originally described as ``Kapiza-Dirac scattering'' and
``Superradiant Rayleigh scattering'', can be interpreted as the semiclassical
and quantum limits respectively of CARL lasing.Comment: 10 pages, 5 figures - to appear in Journal of Optics
Inducing strong density modulation with small energy dispersion in particle beams and the harmonic amplifier free electron laser
We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative electron/radiation phase changes is used to demonstrate supression of the fundamental growth in a high gain FEL so that the FEL lases at the harmonic only
Four wave mixing with self-phase matching due to collective atomic recoil
We describe a method for non-degenerate four-wave mixing in a cold sample of
4-level atoms. An integral part of the four-wave mixing process is a
collective instability which spontaneously generates a periodic density
modulation in the cold atomic sample with a period equal to half of the
wavelength of the generated high-frequency optical field. Due to the generation
of this density modulation, phase-matching between the pump and scattered
fields is not a necessary initial condition for this wave-mixing process to
occur, rather the density modulation acts to "self phase-match" the fields
during the course of the wave-mixing process. We describe a one-dimensional
model of this process, and suggest a proof-of-principle experiment which would
involve pumping a sample of cold Cs atoms with three infra-red pump fields to
produce blue light.Comment: to appear in Physical Review Letter
Synchronization of Bloch oscillations by a ring cavity
We consider Bloch oscillations of ultracold atoms stored in a one-dimensional
vertical optical lattice and simultaneously interacting with a unidirectionally
pumped optical ring cavity whose vertical arm is collinear with the optical
lattice. We find that the feedback provided by the cavity field on the atomic
motion synchronizes Bloch oscillations via a mode-locking mechanism, steering
the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations
against noise, and even suppresses dephasing due to atom-atom interactions.
Furthermore, it generates periodic bursts of light emitted into the
counter-propagating cavity mode, providing a non-destructive monitor of the
atomic dynamics. All these features may be crucial for future improvements of
the design of atomic gravimeters based on recording Bloch oscillations.Comment: 14 pages, 7 figure
Two-stream instability in quasi-one-dimensional Bose-Einstein condensates
We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of unstable Bogoliubov waves that may be excited in the counterpropagation configuration. We identify a dimensionless parameter, the Mach number at T=0, that tunes different regimes of stability. We also estimate the magnitude of the main parameters at which two-stream instability is expected to be observed under typical experimental conditions
Photometric Monitoring of the Gravitationally Lensed Ultraluminous BAL Quasar APM08279+5255
We report on one year of photometric monitoring of the ultraluminous BAL
quasar APM 08279+5255. The temporal sampling reveals that this gravitationally
lensed system has brightened by ~0.2 mag in 100 days. Two potential causes
present themselves; either the variability is intrinsic to the quasar, or it is
the result of microlensing by stars in a foreground system. The data is
consistent with both hypotheses and further monitoring is required before
either case can be conclusively confirmed. We demonstrate, however, that
gravitational microlensing can not play a dominant role in explaining the
phenomenal properties exhibited by APM 08279+5255. The identification of
intrinsic variability, coupled with the simple gravitational lensing
configuration, would suggest that APM 08279+5255 is a potential golden lens
from which the cosmological parameters can be derived and is worthy of a
monitoring program at high spatial resolution.Comment: 17 pages, with 2 figures. Accepted for publication in P.A.S.
- …
