200 research outputs found

    Synthetizing hydrodynamic turbulence from noise: formalism and applications to plankton dynamics

    Get PDF
    We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian 2D turbulent flows by using linear stochastic partial differential equations, where the noise term acts as a random force of well-prescribed statistics. This methodology leads to a divergence-free, isotropic, stationary and homogeneous velocity field, whose characteristic parameters are well reproduced, in particular the kinematic viscosity and energy spectrum. This practical approach to tailor a turbulent flow is justified by its versatility when analizing different physical processes occurring in advectely mixed systems. Here, we focuss on an application to study the dynamics of Planktonic populations in the ocean

    Asymptotic Dynamics of Breathers in Fermi-Pasta-Ulam Chains

    Get PDF
    We study the asymptotic dynamics of breathers in finite Fermi-Pasta-Ulam chains at zero and non-zero temperatures. While such breathers are essentially stationary and very long-lived at zero temperature, thermal fluctuations tend to lead to breather motion and more rapid decay

    Equilibrium microphase separation in the two-leaflet model of lipid membranes

    Get PDF
    Because of the coupling between local lipid composition and the thickness of the membrane, microphase separation in two-component lipid membranes can take place; such effects may underlie the formation of equilibrium nanoscale rafts. Using a kinetic description, this phenomenon is analytically and numerically investigated. The phase diagram is constructed through the stability analysis for linearized kinetic equations, and conditions for microphase separation are discussed. Simulations of the full kinetic model reveal the development of equilibrium membrane nanostructures with various morphologies from the initial uniform state

    Energy Relaxation in Nonlinear One-Dimensional Lattices

    Get PDF
    We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower frequency modes relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy nonlinear modes into lower energy ones. The lowest energy modes are absorbed by the cold reservoir, but a small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is extremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breathers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized array and observing the relaxation behavior

    Stationary and moving breathers in a simplified model of curved alpha--helix proteins

    Get PDF
    The existence, stability and movability of breathers in a model for alpha-helix proteins is studied. This model basically consists a chain of dipole moments parallel to it. The existence of localized linear modes brings about that the system has a characteristic frequency, which depends on the curvature of the chain. Hard breathers are stable, while soft ones experiment subharmonic instabilities that preserve, however the localization. Moving breathers can travel across the bending point for small curvature and are reflected when it is increased. No trapping of breathers takes place.Comment: 19 pages, 11 figure

    Thermal Resonance in Signal Transmission

    Get PDF
    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.

    Nonequilibrium orientational patterns in two-component Langmuir monolayers

    Get PDF
    A model of a phase-separating two-component Langmuir monolayer in the presence of a photo-induced reaction interconvering two components is formulated. An interplay between phase separation, orientational ordering and treaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources and vortex defects.Comment: Submitted to the Physical Review

    Nonlinearity-induced conformational instability and dynamics of biopolymers

    Full text link
    We propose a simple phenomenological model for describing the conformational dynamics of biopolymers via the nonlinearity-induced buckling and collapse (i.e. coiling up) instabilities. Taking into account the coupling between the internal and mechanical degrees of freedom of a semiflexible biopolymer chain, we show that self-trapped internal excitations (such as amide-I vibrations in proteins, base-pair vibrations in DNA, or polarons in proteins) may produce the buckling and collapse instabilities of an initially straight chain. These instabilities remain latent in a straight infinitely long chain, because the bending of such a chain would require an infinite energy. However, they manifest themselves as soon as we consider more realistic cases and take into account a finite length of the chain. In this case the nonlinear localized modes may act as drivers giving impetus to the conformational dynamics of biopolymers. The buckling instability is responsible, in particular, for the large-amplitude localized bending waves which accompany the nonlinear modes propagating along the chain. In the case of the collapse instability, the chain folds into a compact three-dimensional coil. The viscous damping of the aqueous environment only slows down the folding of the chain, but does not stop it even for a large damping. We find that these effects are only weakly affected by the peculiarities of the interaction potentials, and thus they should be generic for different models of semiflexible chains carrying nonlinear localized excitations.Comment: 4 pages (RevTeX) with 5 figures (EPS
    corecore