1,529 research outputs found
Design description of the Schuchuli Village photovoltaic power system
A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted
Operational performance of the photovoltaic-powered grain mill and water pump at Tangaye, Upper Volta
The first two years of operation of a stand alone photovoltaic (PV) power system for the village of Tangaye, Upper Volta in West Africa are described. The purpose of the experiment was to demonstrate that PV systems could provide reliable electrical power for multiple use applications in remote areas where local technical expertise is limited. The 1.8 kW (peak) power system supplies 120-V (d.c.) electrical power to operate a grain mill, a water pump, and mill building lights for the village. The system was initially sized to pump a part of the village water requirements from an existing improved well, and to meet a portion of the village grain grinding requirements. The data, observations, experiences, and conclusions developed during the first two years of operation are discussed. Reports of tests of the mills used in the project are included
Tunisia Renewable Energy Project systems description report
In 1979, the Agency for International Development (AID) initiated a renewable energy project with the Government of Tunisia to develop an institutional capability to plan and institute renewable energy technologies in a rural area. The specific objective of the district energy applications subproject was to demonstrate solar and wind energy systems in a rural village setting. The NASA Lewis Research Center was asked by the AID Near East Bureau to manage and implement this subproject. This report describes the project and gives detailed desciptions of the various systems
Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VII. V1200 Centauri: a bright triple in the Hyades moving group
We present the orbital and physical parameters of the detached eclipsing
binary V1200~Centauri (ASAS~J135218-3837.3) from the analysis of spectroscopic
observations and light curves from the \textit{All Sky Automated Survey} (ASAS)
and SuperWASP database. The radial velocities were computed from the
high-resolution spectra obtained with the OUC 50-cm telescope and PUCHEROS
spectrograph and with 1.2m Euler telescope and CORALIE spectrograph using the
cross-correlation technique \textsc{todcor}. We found that the absolute
parameters of the system are M, M, R, R.
We investigated the evolutionary status and kinematics of the binary and our
results indicate that V1200~Centauri is likely a member of the Hyades moving
group, but the largely inflated secondary's radius may suggest that the system
may be even younger, around 30 Myr. We also found that the eclipsing pair is
orbited by another, stellar-mass object on a 351-day orbit, which is unusually
short for hierarchical triples. This makes V1200 Cen a potentially interesting
target for testing the formation models of multiple stars.Comment: Accepted for publication in MNRAS, 8 pages, 4 figure
Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - VI. AK Fornacis - a rare, bright K-type eclipsing binary
We present the results of the combined photometric and spectroscopic analysis
of a bright (V=9.14), nearby (d=31 pc), late-type detached eclipsing binary AK
Fornacis. This P=3.981 d system has not been previously recognised as a
double-lined spectroscopic binary, and this is the first full physical model of
this unique target. With the FEROS, CORALIE and HARPS spectrographs we
collected a number of high-resolution spectra in order to calculate radial
velocities of both components of the binary. Measurements were done with our
own disentangling procedure and the TODCOR technique, and were later combined
with the photometry from the ASAS and SuperWASP archives. We also performed an
atmospheric analysis of the component spectra with the Spectroscopy Made Easy
(SME) package. Our analysis shows that AK For consists of two active, cool
dwarfs having masses of and
M and radii of and
R, slightly less metal abundant than the Sun. Parameters of both
components are well reproduced by the models.
AK For is the brightest system among the known eclipsing binaries with K or M
type stars. Its orbital period is one of the longest and rotational velocities
one of the lowest, which allows us to obtain very precise radial velocity
measurements. The precision in physical parameters we obtained places AK For
among the binaries with the best mass measurements in the literature. It also
fills the gap in our knowledge of stars in the range of 0.5-0.8 M, and
between short and long-period systems. All this makes AK For a unique benchmark
for understanding the properties of low-mass stars.Comment: 9 pages, 11 figures, 3 tables, accpeted for publication in A&
Comparative study of radiation-induced damage in magnesium aluminate spinel by means of IL, CL and RBS/C techniques
International audienceA comparative study of damage accumulation in magnesium aluminate spinel (MgAl2O4) has been conducted using ionoluminescence (IL), cathodoluminescence (CL) and Rutherford Backscattering Spectrometry/channeling (RBS/C) techniques. MgAl2O4 single crystal and polycrystalline samples were irradiated with 320 keV Ar+ ions at fluencies ranging from 1 × 1012 to 2 × 1016 cm−2 in order to create various levels of radiation damage. RBS/C measurements provided quantitative data about damage concentration in the samples. These values were then compared to the luminescence measurements. The results obtained by IL and RBS/C methods demonstrate a two-step character of damage buildup process. The CL data analysis points to the three-step damage accumulation mechanism involving the first defect transformation at fluencies of about 1013 cm−2 and second at about 1015 cm−2. The rate of changes resulting from the formation of nonluminescent recombination centers is clearly nonlinear and cannot be described in terms of continuous accumulation of point defects. Both, IL and CL techniques, appear as new, complementary tools bringing new possibilities in the damage accumulation studies in single- and polycrystalline materials
- …
