10,875 research outputs found

    The far-infrared - radio correlation in dwarf galaxies

    Full text link
    The far-infrared - radio correlation connects star formation and magnetic fields in galaxies, and has been confirmed over a large range of far-infrared luminosities. Recent investigations indicate that it may even hold in the regime of local dwarf galaxies, and we explore here the expected behavior in the regime of star formation surface densities below 0.1 M_sun kpc^{-2} yr^{-1}. We derive two conditions that can be particularly relevant for inducing a change in the expected correlation: a critical star formation surface density to maintain the correlation between star formation rate and the magnetic field, and a critical star formation surface density below which cosmic ray diffusion losses dominate over their injection via supernova explosions. For rotation periods shorter than 1.5x10^7 (H/kpc)^2 yrs, with H the scale height of the disk, the first correlation will break down before diffusion losses are relevant, as higher star formation rates are required to maintain the correlation between star formation rate and magnetic field strength. For high star formation surface densities Sigma_SFR, we derive a characteristic scaling of the non-thermal radio to the far-infrared / infrared emission with Sigma_SFR^{1/3}, corresponding to a scaling of the non-thermal radio luminosity L_s with the infrared luminosity L_{th} as L_{th}^{4/3}. The latter is expected to change when the above processes are no longer steadily maintained. In the regime of long rotation periods, we expect a transition towards a steeper scaling with Sigma_SFR^{2/3}, implying L_s~L_th^{5/3}, while the regime of fast rotation is expected to show a considerably enhanced scatter. These scaling relations explain the increasing thermal fraction of the radio emission observed within local dwarfs, and can be tested with future observations by the SKA and its precursor radio telescopes.Comment: 16 pages, 11 figures, accepted at A&

    A new interpretation of the far-infrared - radio correlation and the expected breakdown at high redshift

    Full text link
    (Abrigded) Observations of galaxies up to z 2 show a tight correlation between far-infrared and radio continuum emission. We explain the far-infrared - radio continuum correlation by relating star formation and magnetic field strength in terms of turbulent magnetic field amplification, where turbulence is injected by supernova explosions from massive stars. We calculate the expected amount of turbulence in galaxies based on their star formation rates, and infer the expected magnetic field strength due to turbulent dynamo amplification. We estimate the timescales for cosmic ray energy losses via synchrotron emission, inverse Compton scattering, ionization and bremsstrahlung emission, probing up to which redshift strong synchrotron emission can be maintained. We find that the correlation between star formation rate and magnetic field strength in the local Universe can be understood as a result of turbulent magnetic field amplification. If the typical gas density in the interstellar medium increases at high z, we expect an increase of the magnetic field strength and the radio emission, as indicated by current observations. Such an increase would imply a modification of the far-infrared - radio correlation. We expect a breakdown when inverse Compton losses start dominating over synchrotron emission. For a given star formation surface density, we calculate the redshift where the breakdown occurs, yielding z (Sigma_SFR/0.0045 M_solar kpc^{-2} yr^{-1})^{1/(6-alpha/2)}. In this relation, the parameter \alpha describes the evolution of the characteristic ISM density in galaxies as (1+z)^\alpha. Both the possible raise of the radio emission at high redshift and the final breakdown of the far-infrared -- radio correlation at a critical redshift will be probed by the Square Kilometre Array (SKA) and its pathfinders, while the typical ISM density in galaxies will be probed with ALMA.Comment: 13 pages, 14 figures, 1 table, accepted at A&A (proof corrections included

    Algebraic Quantum Theory on Manifolds: A Haag-Kastler Setting for Quantum Geometry

    Get PDF
    Motivated by the invariance of current representations of quantum gravity under diffeomorphisms much more general than isometries, the Haag-Kastler setting is extended to manifolds without metric background structure. First, the causal structure on a differentiable manifold M of arbitrary dimension (d+1>2) can be defined in purely topological terms, via cones (C-causality). Then, the general structure of a net of C*-algebras on a manifold M and its causal properties required for an algebraic quantum field theory can be described as an extension of the Haag-Kastler axiomatic framework. An important application is given with quantum geometry on a spatial slice within the causally exterior region of a topological horizon H, resulting in a net of Weyl algebras for states with an infinite number of intersection points of edges and transversal (d-1)-faces within any neighbourhood of the spatial boundary S^2.Comment: 15 pages, Latex; v2: several corrections, in particular in def. 1 and in sec.

    Cosmological particle creation in states of low energy

    Full text link
    The recently proposed states of low energy provide a well-motivated class of reference states for the quantized linear scalar field on cosmological Friedmann-Robertson-Walker spacetimes. The low energy property of a state is localized close to some value of the cosmological time coordinate. We present calculations of the relative cosmological particle production between a state of low energy at early time and another such state at later time. In an exponentially expanding Universe, we find that the particle production shows oscillations in the spatial frequency modes. The basis of the method for calculating the relative particle production is completely rigorous. Approximations are only used at the level of numerical calculation.Comment: 24 pages, 7 figure

    Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model

    Full text link
    One of the major difficulties in employing phase field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.Comment: 14 pages, 9 figure

    RETURN ON INVESTMENT IN SOCIAL NETWORKS

    Get PDF
    This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, R(ON) to R(OFF) ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed

    Instanton filtering for the stochastic Burgers equation

    Full text link
    We address the question whether one can identify instantons in direct numerical simulations of the stochastically driven Burgers equation. For this purpose, we first solve the instanton equations using the Chernykh-Stepanov method [Phys. Rev. E 64, 026306 (2001)]. These results are then compared to direct numerical simulations by introducing a filtering technique to extract prescribed rare events from massive data sets of realizations. Using this approach we can extract the entire time history of the instanton evolution which allows us to identify the different phases predicted by the direct method of Chernykh and Stepanov with remarkable agreement

    Nonlinear magnetic field dependence of the conductance in d-wave NIS tunnel junctions

    Full text link
    The ab-plane NIS-tunnelling conductance in d-wave superconductors shows a zero-bias conductance peak which is predicted to split in a magnetic field. In a pure d-wave superconductor the splitting is linear for fields small on the scale of the thermodynamic critical field. The field dependence is shown to be nonlinear, even at low fields, in the vicinity of a surface phase transition into a local time-reversal symmetry breaking state. The field evolution of the conductance is sensitive to temperature, doping, and the symmetry of the sub-dominant pairing channel.Comment: 4 pages, 4 figure

    Organizational intelligence and negotiation based DAI systems – theoretical foundations and experimental results

    Full text link
    A steadily increasing number of researchers believes that so-called ’organizational’ multi agent systems are a key technology to support information and knowledge processing activities in cooperative, networked organizations. This, in turn, necessitates their integration with the underlying human-centred organization.The concept of an ’organization’ has emerged as central to the structuring of activities of both decentralized industrial and commercial conglomerates and collections of intelligent problem solvers within Distributed Artificial Intelligence (DAI) systems. Of late a new discipline has begun to emerge, that of Organizational Intelligence (OI). Organizational Intelligence demands a greater synthesis between the principles of Organization Theory (OT) and DAI, by the explicit incorporation of theories of both organizations and DAI into the field of OI. This paper concentrates on two rather important features of OI, namely organizational memory and learning capabilities. It will first discuss the theoretical foundations. Then it will be shown how the contract net approach can be extended to meet these demands. Finally, it will be proved by some experimental results that the increased "intellectual" capabilities of the extended contract net will substantially contribute to the performance as well as the quality of solution processes.<br/
    corecore