30 research outputs found

    Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer

    Get PDF
    Aromatic amines, N-nitroso compounds and heterocyclic amines are suspected human pancreatic carcinogens. Cytochrome P450 (CYP) 1A2, N-acetyltransferase (NAT) 1, NAT2 and sulfotransferase (SULT) are enzymes involved in the metabolism of these carcinogens. To test the hypothesis that genetic variations in carcinogen metabolism modify the risk of pancreatic cancer (PC), we investigated the effect of single-nucleotide polymorphisms (SNPs) of the CYP1A2, NAT1, NAT2 and SULT1A1 gene on modification of the risk of PC in a hospital-based study of 755 patients with pancreatic adenocarcinoma and 636 healthy frequency-matched controls. Smoking and dietary mutagen exposure information was collected by personal interviews. Genotypes were determined using the polymerase chain reaction–restriction fragment length polymorphism and Taqman methods. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional multivariate logistic regression analysis. We observed no significant main effects of any of these genes on the risk of PC. The CYP1A2 and NAT1 but not SULT1A1 and NAT2 genotypes showed significant interactions with heavy smoking in women not men. In contrast, a significant interaction between NAT1 genotype and dietary mutagen intake on modifying the risk of PC were observed among men but not women. The OR (95% CI) of PC was 2.23 (1.33–3.72) and 2.54 (1.51–4.25) for men having the NAT1*10 and a higher intake of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and benzo[a]pyrene, respectively, compared with individuals having no NAT1*10 or a lower intake of these dietary mutagens. These data suggest the existence of gender-specific susceptibility to tobacco carcinogen and dietary mutagen exposure in PC

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    Get PDF
    Background: Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e. g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods: Workers (N = 132) exposed to TDI and a non-exposed group ( N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 1105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1* 05, TNF-308, TNF-863) and symptoms of the eyes, upper and lower airways ( based on structured interviews). Results: For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68-6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4-110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms ( eye symptoms: variant carriers OR = 2.8, 1.1-7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69-7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed, NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion: Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non- TDI-related symptoms of the eyes and lower airways

    Current strategies for quantification of estrogens in clinical research

    Get PDF
    Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC–MS, GC–MS/MS, LC–MS and LC–MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5–5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment

    Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview

    Get PDF
    The breast tissue is the site of major metabolic conversions of estradiol (E(2)) mediated by specific cytochromes P450 hydroxylations and methylation by catechol-O-methytransferase. In addition to E(2 )itself, recent findings highlight the significance of 4-hydroxylated estrogen metabolites as chemical mediators and their link to breast cancer development and progression, whereas, in opposition, 2-methoxylated estrogens appear to be protective. Recent data also indicate that breast tissue possesses enzymatic machinery to inactivate and eliminate E(2 )and its oxidized and methoxylated metabolites through conjugation catalyzed by UDP-glucuronosyltransferases (UGTs), which involves the covalent addition of glucuronic acid. In opposition to other metabolic pathways of estrogen, the UGT-mediated process leads to the formation of glucuronides that are devoid of biologic activity and are readily excreted from the tissue into the circulation. This review addresses the most recent findings on the identification of UGT enzymes that are responsible for the glucuronidation of E(2 )and its metabolites, and evidence regarding their potential role in breast cancer
    corecore