18,060 research outputs found
Quantifying Shannon's Work Function for Cryptanalytic Attacks
Attacks on cryptographic systems are limited by the available computational
resources. A theoretical understanding of these resource limitations is needed
to evaluate the security of cryptographic primitives and procedures. This study
uses an Attacker versus Environment game formalism based on computability logic
to quantify Shannon's work function and evaluate resource use in cryptanalysis.
A simple cost function is defined which allows to quantify a wide range of
theoretical and real computational resources. With this approach the use of
custom hardware, e.g., FPGA boards, in cryptanalysis can be analyzed. Applied
to real cryptanalytic problems, it raises, for instance, the expectation that
the computer time needed to break some simple 90 bit strong cryptographic
primitives might theoretically be less than two years.Comment: 19 page
Quantifying Resource Use in Computations
It is currently not possible to quantify the resources needed to perform a
computation. As a consequence, it is not possible to reliably evaluate the
hardware resources needed for the application of algorithms or the running of
programs. This is apparent in both computer science, for instance, in
cryptanalysis, and in neuroscience, for instance, comparative neuro-anatomy. A
System versus Environment game formalism is proposed based on Computability
Logic that allows to define a computational work function that describes the
theoretical and physical resources needed to perform any purely algorithmic
computation. Within this formalism, the cost of a computation is defined as the
sum of information storage over the steps of the computation. The size of the
computational device, eg, the action table of a Universal Turing Machine, the
number of transistors in silicon, or the number and complexity of synapses in a
neural net, is explicitly included in the computational cost. The proposed cost
function leads in a natural way to known computational trade-offs and can be
used to estimate the computational capacity of real silicon hardware and neural
nets. The theory is applied to a historical case of 56 bit DES key recovery, as
an example of application to cryptanalysis. Furthermore, the relative
computational capacities of human brain neurons and the C. elegans nervous
system are estimated as an example of application to neural nets.Comment: 26 pages, no figure
Swinging and Tumbling of Fluid Vesicles in Shear Flow
The dynamics of fluid vesicles in simple shear flow is studied using
mesoscale simulations of dynamically-triangulated surfaces, as well as a
theoretical approach based on two variables, a shape parameter and the
inclination angle, which has no adjustable parameters. We show that between the
well-known tank-treading and tumbling states, a new ``swinging'' state can
appear. We predict the dynamic phase diagram as a function of the shear rate,
the viscosities of the membrane and the internal fluid, and the reduced vesicle
volume. Our results agree well with recent experiments.Comment: 4 pages, 4 figure
Coulomb impurity in graphene
We consider the problem of screening of an electrically charged impurity in a
clean graphene sheet. When electron-electron interactions are neglected, the
screening charge has a sign opposite to that of the impurity, and is localized
near the impurity. Interactions between electrons smear out the induced charge
density to give a large-distance tail that follows approximately, but not
exactly, an r^{-2} behavior and with a sign which is the same as that of the
impurity.Comment: 10 pages, 3 figures; (v2) Corrected sign error in Eq. (13); (v3)
corrected figure
Species Differentiation Of Fish Samples By Restriction Fragment Length Polymorphism Analysis Of Cytochrome B Gene
Metode pengukuran polimorfisme fragmen hasil pemotongan produkreaksi polimorfik berantai oleh enzim restriksi spesifik (polymerase chainreaction-restriction fragment length polymorphism, RFLP-PCR) telah digunakanuntuk membedakan beberapa jenis ikan mentah. Situs cytochrome b mitokondria,yang diamplifikasi oleh primer universal, dipotong menggunakan empat enzimrestriksi (Bfa I, Hinf I, Msp I, Mbo II) sehingga dapat dianalisa fragment-fragmentpendeknya. Hasil yang diperolah dari pemotongan oleh enzim restriksi tersebutternyata dapat digunakan untuk membedakan tiap jenis ikan sampel. Hasilpenelitian ini menunjukkan bahwa PCR dan RFLP-PCR merupakan metode yangsensitif dan dapat dilakukan dalam waktu singkat untuk membedakan berbagaijenis ikan mentah
Note on cosmology of dimensionally reduced gravitational Chern-Simons
We present cosmological solutions from the dimensionally reduced Chern-Simons
term and obtain the smooth transition solution from the decelerated phase (AdS)
to the accelerated phase (dS).Comment: 3 pages, minor changes, references added, version to appear in PR
An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems
We present the first systematic analysis of the characteristics of patch
search spaces for automatic patch generation systems. We analyze the search
spaces of two current state-of-the-art systems, SPR and Prophet, with 16
different search space configurations. Our results are derived from an analysis
of 1104 different search spaces and 768 patch generation executions. Together
these experiments consumed over 9000 hours of CPU time on Amazon EC2.
The analysis shows that 1) correct patches are sparse in the search spaces
(typically at most one correct patch per search space per defect), 2) incorrect
patches that nevertheless pass all of the test cases in the validation test
suite are typically orders of magnitude more abundant, and 3) leveraging
information other than the test suite is therefore critical for enabling the
system to successfully isolate correct patches.
We also characterize a key tradeoff in the structure of the search spaces.
Larger and richer search spaces that contain correct patches for more defects
can actually cause systems to find fewer, not more, correct patches. We
identify two reasons for this phenomenon: 1) increased validation times because
of the presence of more candidate patches and 2) more incorrect patches that
pass the test suite and block the discovery of correct patches. These
fundamental properties, which are all characterized for the first time in this
paper, help explain why past systems often fail to generate correct patches and
help identify challenges, opportunities, and productive future directions for
the field
Does parton saturation at high density explain hadron multiplicities at LHC?
An addendum to our previous papers in Phys. Lett. B539 (2002) 46 and Phys.
Lett. B502 (2001) 51, contributed to the CERN meeting "First data from the LHC
heavy ion run", March 4, 2011Comment: 6 pages, contribution to the CERN meeting "First data from the LHC
heavy ion run", March 4, 201
- …