473 research outputs found
Increased copulation duration before ejaculate transfer is associated with larger spermatophores, and male genital titillators, across bushcricket taxa
Copulation duration varies considerably across species, but few comparative studies have examined factors that might underlie such variation. We examined the relationship between copulation duration (prior to spermatophore transfer), the complexity of titillators (sclerotized male genital contact structures), spermatophore mass and male body mass across 54 species of bushcricket. Using phylogenetic comparative analyses, we found that copulation duration was much longer in species with titillators than those without, but it was not longer in species with complex compared with simple titillators. A positive relationship was found between spermatophore size and copulation duration prior to ejaculate transfer, which supports the hypothesis that this represents a period of mate assessment. The slope of this relationship was steeper in species with simple rather than complex titillators. Although the data suggest that the presence of titillators is necessary to maintain long copulation prior to ejaculate transfer, mechanisms underlying this association remain unclear
Recommended from our members
The Dissociation between Early and Late Selection in Older Adults
Older adults exhibit a reduced ability to ignore task-irrelevant stimuli; however, it remains to be determined where along the information processing stream the most salient age-associated changes occur. In the current study, ERPs provided an opportunity to determine whether age-related differences in processing task-irrelevant stimuli were uniform across information processing stages or disproportionately affected either early or late selection. ERPs were measured in young and old adults during a color-selective attention task in which participants responded to target letters in a specified color (attend condition) while ignoring letters in a different color (ignore condition). Old participants were matched to two groups of young participants on the basis of neuropsychological test performance: one using age-appropriate norms and the other using test scores not adjusted for age. There were no age-associated differences in the magnitude of early selection (attend–ignore), as indexed by the size of the anterior selection positivity and posterior selection negativity. During late selection, as indexed by P3b amplitude, both groups of young participants generated neural responses to target letters under the attend versus ignore conditions that were highly differentiated. In striking contrast, old participants generated a P3b to target letters with no reliable differences between conditions. Individuals who were slow to initiate early selection appeared to be less successful at executing late selection. Despite relative preservation of the operations of early selection, processing delays may lead older participants to allocate excessive resources to task-irrelevant stimuli during late selection
Recommended from our members
Longitudinal Trajectories of the Cognitive Function Index in the A4 Study.
BACKGROUND: The Anti-Amyloid in Asymptomatic Alzheimers Disease (A4) Study failed to show a treatment benefit with solanezumab, but the longitudinal consequences of elevated amyloid were observed in study participants with objective decline on the Preclinical Alzheimer Cognitive Composite (PACC) and subjective decline on the combined Cognitive Function Index (participant + study partner CFI), during the trial period. OBJECTIVES: We sought to expand on previous findings by comparing longitudinal patterns of participant and study partner CFI separately and their associations with the PACC stratified by baseline amyloid tertile over the course of the A4 Study. DESIGN: Cognitively unimpaired older adult participants and their study partners were independently administered the CFI at screen prior to amyloid PET disclosure and then at 3 subsequent visits (week 48, week 168, week 240) of the study. PACC collected at visits concurrent with CFI administration were also examined longitudinally. SETTING: The A4 Study was conducted at 67 sites in Australia, Canada, Japan, and the United States. PARTICIPANTS: 1,147 participants with elevated amyloid based on florbetapir PET were enrolled in the A4 Study and included in these analyses. 583 were on placebo and 564 were treated with solanezumab. MEASUREMENTS: The PACC was used to assess objective cognitive performance and the CFI was used to assess change in everyday cognitive functioning by the participant and their study partner independently. Amyloid level was characterized by Centiloid tertiles (<46.1 CL, 46.1 to 77.2 CL, >77.2 CL). Participants were aware of their elevated amyloid status, but not their CL tertile, or specific level of amyloid. Longitudinal correlations between participant and study partner CFI and PACC were examined at all visits where assessments were available. The impact of baseline amyloid tertile on CFI and PACC associations was also examined. RESULTS: Both participant and study partner CFI increased over the duration of the study indicating worsening cognitive functioning. Results did not differ by treatment group. The association between higher CFI and worse PACC for both for participant and study partner became progressively stronger over the course of the study. PACC had a significantly higher correlation with study partner CFI than with participant CFI by week 168. The stronger correlations between study partner CFI and PACC were driven by those in the highest amyloid tertile. CONCLUSION: Both participant and study partner report captured subtle changes in everyday cognitive functioning for participants with biomarker confirmed and disclosed preclinical AD. Moreover, study partner report was most highly aligned with cognitive decline, particularly among those with the highest amyloid load
Recommended from our members
Frontal and Parietal Components of a Cerebral Network Mediating Voluntary Attention to Novel Events
Despite the important role that attending to novel events plays in human behavior, there is limited information about the neuroanatomical underpinnings of this vital activity. This study investigated the relative contributions of the frontal and posterior parietal lobes to the differential processing of novel and target stimuli under an experimental condition in which subjects actively directed attention to novel events. Event-related potentials were recorded from well-matched frontal patients, parietal patients, and non-brain-injured subjects who controlled their viewing duration (by button press) of line drawings that included a frequent, repetitive background stimulus, an infrequent target stimulus, and infrequent, novel visual stimuli. Subjects also responded to target stimuli by pressing a foot pedal. Damage to the frontal cortex resulted in a much greater disruption of response to novel stimuli than to designated targets. Frontal patients exhibited a widely distributed, profound reduction of the novelty P3 response and a marked diminution of the viewing duration of novel events. In contrast, damage to posterior parietal lobes was associated with a substantial reduction of both target P3 and novelty P3 amplitude; however, there was less disruption of the processing of novel than of target stimuli. We conclude that two nodes of the neuroanatomical network for responding to and processing novelty are the prefrontal and posterior parietal regions, which participate in the voluntary allocation of attention to novel events. Injury to this network is indexed by reduced novelty P3 amplitude, which is tightly associated with diminished attention to novel stimuli. The prefrontal cortex may serve as the central node in determining the allocation of attentional resources to novel events, whereas the posterior parietal lobe may provide the neural substrate for the dynamic process of updating one's internal model of the environment to take into account a novel event
Recommended from our members
Cognitive status impacts age-related changes in attention to novel and target events in normal adults.
In this study, the authors investigated the relationship between the cognitive status of normal adults and age-related changes in attention to novel and target events. Old, middle-age, and young subjects, divided into cognitively high and cognitively average performing groups, viewed repetitive standard stimuli, infrequent target stimuli, and unique novel visual stimuli. Subjects controlled viewing duration by a button press that led to the onset of the next stimulus. They also responded to targets by pressing a foot pedal. The amount of time spent looking at different kinds of stimuli served as a measure of visual attention and exploratory activity. Cognitively high performers spent more time viewing novel stimuli than cognitively average performers. The magnitude of the difference between cognitively high and cognitively average performing groups was largest among old subjects. Cognitively average performers had slower and less accurate responses to targets than cognitively high performers. The results provide strong evidence that the link between engagement by novelty and higher cognitive performance increases with age. Moreover, the results support the notion of there being different patterns of normal cognitive aging and the need to identify the factors that influence them
Recommended from our members
Amyloid and Tau Prediction of Cognitive and Functional Decline in Unimpaired Older Individuals: Longitudinal Data from the A4 and LEARN Studies.
BACKGROUND: Converging evidence suggests that markers of Alzheimers disease (AD) pathology in cognitively unimpaired older individuals are associated with high risk of cognitive decline and progression to functional impairment. The Anti-Amyloid Treatment in Asymptomatic Alzheimers disease (A4) and Longitudinal Evaluation of Amyloid and Neurodegeneration Risk (LEARN) Studies enrolled a large cohort of cognitively normal older individuals across a range of baseline amyloid PET levels. Recent advances in AD blood-based biomarkers further enable the comparison of baseline markers in the prediction of longitudinal clinical outcomes. OBJECTIVES: We sought to evaluate whether biomarker indicators of higher levels of AD pathology at baseline predicted greater cognitive and functional decline, and to compare the relative predictive power of amyloid PET imaging, tau PET imaging, and a plasma P-tau217 assay. DESIGN: All participants underwent baseline amyloid PET scan, plasma P-tau217; longitudinal cognitive testing with the Primary Alzheimer Cognitive Composite (PACC) every 6 months; and annual functional assessments with the clinical dementia rating (CDR), cognitive functional index (CFI), and activities of daily living (ADL) scales. Baseline tau PET scans were obtained in a subset of participants. Participants with elevated amyloid (Aβ+) on screening PET who met inclusion/exclusion criteria were randomized to receive placebo or solanezumab in a double-blind phase of the A4 Study over 240+ weeks. Participants who did not have elevated amyloid (Aβ-) but were otherwise eligible for the A4 Study were referred to the companion observational LEARN Study with the same outcome assessments over 240+ weeks. SETTING: The A4 and LEARN Studies were conducted at 67 clinical trial sites in the United States, Canada, Japan and Australia. PARTICIPANTS: Older participants (ages 65-85) who were cognitively unimpaired at baseline (CDR-GS=0, MMSE 25-30 with educational adjustment, and Logical Memory scores within the normal range LMIIa 6-18) were eligible to continue in screening. Aβ+ participants were randomized to either placebo (n=583) or solanezumab (n=564) in the A4 Study. A subset of Aβ+ underwent tau PET imaging in A4 (n=350). Aβ- were enrolled into the LEARN Study (n=553). MEASUREMENTS: Baseline 18-F Florbetapir amyloid PET, 18-F Flortaucipir tau PET in a subset and plasma P-tau217 with an electrochemiluminescence (ECL) immunoassay were evaluated as predictors of cognitive (PACC), and functional (CDR, CFI and ADL) change. Models were evaluated to explore the impact of baseline tertiles of amyloid PET and tertiles of plasma P-tau217 on cognitive and functional outcomes in the A4 Study compared to LEARN. Multivariable models were used to evaluate the unique and common variance explained in longitudinal outcomes based on baseline predictors, including effects for age, gender, education, race/ethnic group, APOEε4 carrier status, baseline PACC performance and treatment assignment in A4 participants (solanezumab vs placebo). RESULTS: Higher baseline amyloid PET CL and P-tau217 levels were associated with faster rates of PACC decline, and increased likelihood of progression to functional impairment (CDR 0.5 or higher on two consecutive measurements), both across LEARN Aβ- and A4 Aβ+ (solanezumab and placebo arms). In analyses considering all baseline predictor variables, P-tau217 was the strongest predictor of PACC decline. Among participants in the highest tertiles of amyloid PET or P-tau217, >50% progressed to CDR 0.5 or greater. In the tau PET substudy, neocortical tau was the strongest predictor of PACC decline, but plasma P-tau217 contributed additional independent predictive variance in commonality variance models. CONCLUSIONS: In a large cohort of cognitively unimpaired individuals enrolled in a Phase 3 clinical trial and companion observational study, these findings confirm that higher baseline levels of amyloid and tau markers are associated with increased rates of cognitive decline and progression to functional impairment. Interestingly, plasma P-tau217 was the best predictor of decline in the overall sample, superior to baseline amyloid PET. Neocortical tau was the strongest predictor of cognitive decline in the subgroup with tau PET, suggesting that tau deposition is most closely linked to clinical decline. These findings indicate that biomarkers of AD pathology are useful to predict decline in an older asymptomatic population and may prove valuable in the selection of individuals for disease-modifying treatments
Effect of Human Disturbance on Small Mammal Communities in Itasca State Park, Minnesota
We determined effects of different levels of human disturbance on small mammal richness and relative abundance from live-trapping data obtained in Itasca State Park in northwestern Minnesota. We developed a quantitative measure of human disturbance based on disturbance units and trapped small mammals on three study sites, each reflecting a different level of disturbance. Our data revealed that small mammal diversity decreased with increasing human disturbance. Amount of ground cover and litter depth also appeared to be important in explaining differences in the demographic patterns of small mammals among sites
- …