66 research outputs found

    Interrelation between the pseudogap and the incoherent quasi-particle features of high-Tc superconductors

    Full text link
    Using a scenario of a hybridized mixture of localized bipolarons and conduction electrons, we demonstrate for the latter the simultaneous appearance of a pseudogap and of strong incoherent contributions to their quasi-particle spectrum which arise from phonon shake-off effects. This can be traced back to temporarily fluctuating local lattice deformations, giving rise to a double-peak structure in the pair distribution function, which should be a key feature in testing the origin of these incoherent contributions, recently seen in angle-resolved photoemission spectroscopy (ARPES).Comment: 4 pages, 3 figures, to be published in Phys. Rev. Let

    Inelastic X-ray Scattering by Electronic Excitations in Solids at High Pressure

    Get PDF
    Investigating electronic structure and excitations under extreme conditions gives access to a rich variety of phenomena. High pressure typically induces behavior such as magnetic collapse and the insulator-metal transition in 3d transition metals compounds, valence fluctuations or Kondo-like characteristics in ff-electron systems, and coordination and bonding changes in molecular solids and glasses. This article reviews research concerning electronic excitations in materials under extreme conditions using inelastic x-ray scattering (IXS). IXS is a spectroscopic probe of choice for this study because of its chemical and orbital selectivity and the richness of information it provides. Being an all-photon technique, IXS has a penetration depth compatible with high pressure requirements. Electronic transitions under pressure in 3d transition metals compounds and ff-electron systems, most of them strongly correlated, are reviewed. Implications for geophysics are mentioned. Since the incident X-ray energy can easily be tuned to absorption edges, resonant IXS, often employed, is discussed at length. Finally studies involving local structure changes and electronic transitions under pressure in materials containing light elements are briefly reviewed.Comment: submitted to Rev. Mod. Phy

    Pressure induced high-spin to low-spin transition in FeS evidenced by x-ray emission spectroscopy

    Full text link
    We report the observation of the pressure-induced high-spin to low-spin transition in FeS using new high-pressure synchrotron x-ray emission spectroscopy techniques. The transition is evidenced by the disappearance of the low-energy satellite in the Fe Kβ\beta emission spectrum of FeS. Moreover, the phase transition is reversible and closely related to the structural phase transition from a manganese phosphide-like phase to a monoclinic phase. The study opens new opportunities for investigating the electronic properties of materials under pressure.Comment: ReVTeX, 4 pages, 3 figures inserted with epsfig. minor modifications before submission to PR

    Slow crossover in YbXCu4 intermediate valence compounds

    Full text link
    We compare the results of measurements of the magnetic susceptibility Chi(T), the linear coefficient of specific heat Gamma(T)=C(T)/T and 4f occupation number nf(T) for the intermediate valence compounds YbXCu4 (X = Ag, Cd, In, Mg, Tl, Zn) to the predictions of the Anderson impurity model, calculated in the non-crossing approximation (NCA). The crossover from the low temperature Fermi liquid state to the high temperature local moment state is substantially slower in the compounds than predicted by the NCA; this corresponds to the ''protracted screening'' recently predicted for the Anderson Lattice. We present results for the dynamic susceptibility, measured through neutron scattering experiments, to show that the deviations between theory and experiment are not due to crystal field effects, and we present x-ray-absorption fine-structure (XAFS) results that show the local crystal structure around the X atoms is well ordered, so that the deviations probably do not arise from Kondo Disorder. The deviations may correlate with the background conduction electron density, as predicted for protracted screening.Comment: Submitted to Physical Review B on June 7, 2000, accepted for publication November 2, 2000. Changes to the original manuscript include: 1) a discussion of the relation of the slow crossover to the conduction electron density; 2) a discussion of the relation of the reported results to earlier photoemission results; and, 3) minor editorial change

    Superconductivity in Ce- and U-based "122" heavy-fermion compounds

    Full text link
    This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent Developments in Superconductivity") Metadata and references update

    Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?

    Full text link
    There is considerable evidence for some form of charge ordering on the hole-doped stripes in the cuprates, mainly associated with the low-temperature tetragonal phase, but with some evidence for either charge density waves or a flux phase, which is a form of dynamic charge-density wave. These three states form a pseudospin triplet, demonstrating a close connection with the E X e dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller effect as a form of flux phase. A simple model of the Cu-O bond stretching phonons allows an estimate of electron-phonon coupling for these modes, explaining why the half breathing mode softens so much more than the full oxygen breathing mode. The anomalous properties of O2−O^{2-} provide a coupling (correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon modes, 16 eps figures, revte

    X-ray absorption study of the 'Pr III'–'Pr IV' transition in elemental praseodymium

    No full text
    We have measured the pressure dependence (0–260 kbar, 300 K) of the LIII X-ray absorption line in elemental praseodymium. LIII line Up to the highest applied pressure we observe single-line shaped LIII spectra. The LIII core-level binding energy and width turn out to be almost independent on compression down to V/V0 = 0.53. No discontinuity of the spectral parameters occur at the first order transition into the ‘Pr IV’ phase and no double-line features start to emerge as in the LIII spectra of collapsed α-, α′-Ce. We have no evidence for valence instabilities, neither Pr3+/Pr4+ nor Pr2+/Pr3+. Even incipient valence instabilities, close to integer valent Pr3+, have to be ruled out. Hence ‘Pr IV’ turns out to be a trivalent and not a tetravalent metal. If 4f-delocalization occurs in the collapsed ‘Pr IV’ (α-U phase), we expect its mechanism is the formation of a 4f-band rather than valence fluctuations or Kondo-like effects
    • …
    corecore