16 research outputs found

    Kinetic Study of Oxidative Dehydrogenation of Ethane over MoVTeNb Mixed-Oxide Catalyst

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Industrial & Engineering Chemistry Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [insert ACS Articles on Request author-directed link to Published Work, see http://doi.org/10.1021/ie402447h[EN] A MoVTeNb multimetallic mixed oxide was studied for the oxidative dehydrogenation of ethane, a promising alternative for catalytic ethylene production. Lab-scale steady-state experimental reaction data were obtained according to a 3(k) experimental design to investigate the simultaneous effect of temperature (400-480 degrees C) and space time [23-70 g(cat) h (mol of ethane) I]. A fixed-bed reactor at atmospheric pressure was employed, feeding a mixture of ethane, oxygen, and nitrogen. Ethane conversion varied from 17 to 85%, whereas selectivity for ethylene and COx varied from 94 to 76% and from 4.0 to 24%, respectively. These types of analyses are useful for determining the optimum reaction conditions to enhance the catalytic performance of the mixed oxides presented herein.This work was financially supported by the Instituto Mexicano del Petroleo. Technical support from Eng. G. Alonso-Ramirez is gratefully acknowledged.Valente, J.; Quintana-Solorzano, R.; Armendariz-Herrera, H.; Barragan-Rodriguez, G.; López Nieto, JM. (2014). Kinetic Study of Oxidative Dehydrogenation of Ethane over MoVTeNb Mixed-Oxide Catalyst. Industrial and Engineering Chemistry Research. 53(5):1775-1786. doi:10.1021/ie402447hS1775178653

    Understanding the kinetic behavior of a Mo-V-Te-Nb mixed oxide in the oxydehydrogenation of ethane

    Full text link
    Two kinetic models based on Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms were developed to describe the oxydehydrogenation of ethane to yield ethylene over a Mo-V-Te-Nb catalyst. Obtained in a lab-scale fixed-bed reactor, experimental data at the steady-state were used to estimate the kinetic models parameters via a nonisothermal regression. Experiments were performed using an ethane, oxygen and nitrogen mixture as feedstock, spanning temperatures from 673 to 753 K, inlet partial pressures of oxygen and ethane between 5.0 and 22.0 kPa, and space-time from 10 to 70 g(cat) h(molethane)- (1). Ethylene, CO and CO2 were the only detected products, the selectivity for ethylene ranged from 76% to 96% for an ethane conversion interval 4-85%. A series of tests feeding ethylene instead of ethane were also performed at 713 K, varying inlet partial pressures and space-time in the same ranges as was done for ethane. Ethylene conversion was relatively low, 3-14%, the dominant product being CO with CO/CO2 ratios from 0.73 to 0.79. The LH mechanism was found to represent better the experimental data. The oxydehydrogenation of ethane was the reaction with the lowest activation energy, 108-115 kJ mol (1). Except for the conversion of ethane into CO2, deep oxidations were detected as very energetically demanding steps, 156-193 kJ mol (1). Competitive adsorption between reagents and products occurred in the two mechanisms particularly at relatively high reaction severity, water re-adsorption being weaker in comparison with COx re-adsorption. (C) 2014 Elsevier Ltd. All rights reserved.This work was financially supported by the Instituto Mexicano del Petroleo.Quintana-Solorzano, R.; Barragan-Rodriguez, G.; Armendariz-Herrera, H.; López Nieto, JM.; Valente, JS. (2014). Understanding the kinetic behavior of a Mo-V-Te-Nb mixed oxide in the oxydehydrogenation of ethane. Fuel. 138:15-26. doi:10.1016/j.fuel.2014.07.051152613

    Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts

    Full text link
    [EN] Synthesized via the slurry method and activated at high temperature (873 K), MoVTeNb multimetallic mixed oxides are applied to catalyze the oxidative dehydrogenation of ethane to ethylene (ODHE). Mixed oxides typically contain M1 and M2 crystalline phases, the relative contribution of these phases and the respective catalytic behaviour being notably influenced by the preparation conditions of the metallic aqueous solution precursor, given the complexity of the chemical interactions of metal species in solution. Thus, detailed in situ UV-vis and Raman studies of the chemical species formed in solution during each step of the synthetic procedure are presented herein. The main role of vanadium is to form decavanadate ions, which interact with Mo species to generate an Anderson-type structure. When niobium oxalate solution is added into the MoVTe solution, a yellow-coloured gel is immediately formed due to a common ion effect. When liquid and gel phases are separated, the M1 crystalline phase is produced solely from the gel phase. Attention is also devoted to the influence and role of each metal cation (Mo, V, Te and Nb) on the formation of the active M1 crystalline phase and the catalytic behaviour in the ODHE. The catalyst constituted mostly of M1 crystalline phase is able to convert 45% of the fed ethane, with a selectivity to ethylene of around 90%.This work was financially supported by the Instituto Mexicano del Petroleo (IMP) Project D.61010. EMF thanks CONACyT Mexico and IMP. JMLN thanks DGICYT in Spain (Project CTQ2015-68951-C3-1-R).Sánchez-Valente, J.; Maya-Flores, E.; Armendariz-Herrera, H.; Quintana-Solorzano, R.; López Nieto, JM. (2018). Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts. Catalysis Science & Technology. 8(12):3123-3132. https://doi.org/10.1039/c8cy00750kS31233132812Ushikubo, T., Oshima, K., Kayou, A., Vaarkamp, M., & Hatano, M. (1997). Ammoxidation of Propane over Catalysts Comprising Mixed Oxides of Mo and V. Journal of Catalysis, 169(1), 394-396. doi:10.1006/jcat.1997.1692Ushikubo, T., Oshima, K., Kayou, A., & Hatano, M. (1997). Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts. Spillover and Migration of Surface Species on Catalysts, Proceedings of the 4th International Conference on Spillover, 473-480. doi:10.1016/s0167-2991(97)80871-3Ushikubo, T. (2000). Recent topics of research and development of catalysis by niobium and tantalum oxides. Catalysis Today, 57(3-4), 331-338. doi:10.1016/s0920-5861(99)00344-2Ueda, W., & Oshihara, K. (2000). Selective oxidation of light alkanes over hydrothermally synthesized Mo-V-M-O (M=Al, Ga, Bi, Sb, and Te) oxide catalysts. Applied Catalysis A: General, 200(1-2), 135-143. doi:10.1016/s0926-860x(00)00627-xWatanabe, H., & Koyasu, Y. (2000). New synthesis route for Mo–V–Nb–Te mixed oxides catalyst for propane ammoxidation. Applied Catalysis A: General, 194-195, 479-485. doi:10.1016/s0926-860x(99)00394-4Botella, P., Solsona, B., Martinez-Arias, A., & López Nieto, J. M. (2001). Catalysis Letters, 74(3/4), 149-154. doi:10.1023/a:1016614132694Oshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377Botella, P., López Nieto, J. M., Solsona, B., Mifsud, A., & Márquez, F. (2002). The Preparation, Characterization, and Catalytic Behavior of MoVTeNbO Catalysts Prepared by Hydrothermal Synthesis. Journal of Catalysis, 209(2), 445-455. doi:10.1006/jcat.2002.3648Millet, J. M. M., Roussel, H., Pigamo, A., Dubois, J. L., & Jumas, J. C. (2002). Characterization of tellurium in MoVTeNbO catalysts for propane oxidation or ammoxidation. Applied Catalysis A: General, 232(1-2), 77-92. doi:10.1016/s0926-860x(02)00078-9DeSanto Jr., P., Buttrey, D. J., Grasselli, R. K., Lugmair, C. G., Volpe, A. F., Toby, B. H., & Vogt, T. (2003). Topics in Catalysis, 23(1/4), 23-38. doi:10.1023/a:1024812101856Millet, J. M. ., Baca, M., Pigamo, A., Vitry, D., Ueda, W., & Dubois, J. . (2003). Study of the valence state and coordination of antimony in MoVSbO catalysts determined by XANES and EXAFS. Applied Catalysis A: General, 244(2), 359-370. doi:10.1016/s0926-860x(02)00614-2BOTELLA, P. (2004). Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. Journal of Catalysis, 225(2), 428-438. doi:10.1016/j.jcat.2004.04.024Holmberg, J., Grasselli, R. K., & Andersson, A. (2004). Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo–V–Nb–Te–oxide system in propane and propene ammoxidation. Applied Catalysis A: General, 270(1-2), 121-134. doi:10.1016/j.apcata.2004.04.029Grasselli, R. K., Buttrey, D. J., DeSanto, P., Burrington, J. D., Lugmair, C. G., Volpe, A. F., & Weingand, T. (2004). Active centers in Mo–V–Nb–Te–O (amm)oxidation catalysts. Catalysis Today, 91-92, 251-258. doi:10.1016/j.cattod.2004.03.060Ueda, W., Vitry, D., & Katou, T. (2005). Crystalline MoVO based complex oxides as selective oxidation catalysts of propane. Catalysis Today, 99(1-2), 43-49. doi:10.1016/j.cattod.2004.09.022Murayama, H., Vitry, D., Ueda, W., Fuchs, G., Anne, M., & Dubois, J. L. (2007). Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES. Applied Catalysis A: General, 318, 137-142. doi:10.1016/j.apcata.2006.10.050Guliants, V. V., Bhandari, R., Swaminathan, B., Vasudevan, V. K., Brongersma, H. H., Knoester, A., … Han, S. (2005). Roles of Surface Te, Nb, and Sb Oxides in Propane Oxidation to Acrylic Acid over Bulk Orthorhombic Mo−V−O Phase. The Journal of Physical Chemistry B, 109(50), 24046-24055. doi:10.1021/jp054641yGrasselli, R. K., Buttrey, D. J., Burrington, J. D., Andersson, A., Holmberg, J., Ueda, W., … Volpe, A. F. (2006). Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts. Topics in Catalysis, 38(1-3), 7-16. doi:10.1007/s11244-006-0066-xSafonova, O. V., Deniau, B., & Millet, J.-M. M. (2006). Mechanism of the Oxidation−Reduction of the MoVSbNbO Catalyst:  In Operando X-ray Absorption Spectroscopy and Electrical Conductivity Measurements. The Journal of Physical Chemistry B, 110(47), 23962-23967. doi:10.1021/jp064347lWagner, J. B., Timpe, O., Hamid, F. A., Trunschke, A., Wild, U., Su, D. S., … Schlögl, R. (2006). Surface texturing of Mo–V–Te–Nb–O x selective oxidation catalysts. Topics in Catalysis, 38(1-3), 51-58. doi:10.1007/s11244-006-0070-1Kolen’ko, Y. V., Zhang, W., d’ Alnoncourt, R. N., Girgsdies, F., Hansen, T. W., Wolfram, T., … Trunschke, A. (2011). Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions. ChemCatChem, 3(10), 1597-1606. doi:10.1002/cctc.201100089Hävecker, M., Wrabetz, S., Kröhnert, J., Csepei, L.-I., Naumann d’Alnoncourt, R., Kolen’ko, Y. V., … Trunschke, A. (2012). Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid. Journal of Catalysis, 285(1), 48-60. doi:10.1016/j.jcat.2011.09.012Ishikawa, S., Tashiro, M., Murayama, T., & Ueda, W. (2014). Seed-Assisted Synthesis of Crystalline Mo3VOx Oxides and Their Crystal Formation Mechanism. Crystal Growth & Design, 14(9), 4553-4561. doi:10.1021/cg500661pNieto, J. M. L., Botella, P., Vázquez, M. I., & Dejoz, A. (2002). The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem. Commun., (17), 1906-1907. doi:10.1039/b204037aLópez Nieto, J. ., Botella, P., Concepción, P., Dejoz, A., & Vázquez, M. . (2004). Oxidative dehydrogenation of ethane on Te-containing MoVNbO catalysts. Catalysis Today, 91-92, 241-245. doi:10.1016/j.cattod.2004.03.040Ivars, F., Botella, P., Dejoz, A., Nieto, J. M. L., Concepción, P., & Vázquez, M. I. (2006). Selective oxidation of short-chain alkanes over hydrothermally prepared MoVTeNbO catalysts. Topics in Catalysis, 38(1-3), 59-67. doi:10.1007/s11244-006-0071-0Botella, P., Dejoz, A., Abello, M. C., Vázquez, M. I., Arrúa, L., & López Nieto, J. M. (2009). Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 142(3-4), 272-277. doi:10.1016/j.cattod.2008.09.016Deniau, B., Millet, J. M. M., Loridant, S., Christin, N., & Dubois, J. L. (2008). Effect of several cationic substitutions in the M1 active phase of the MoVTeNbO catalysts used for the oxidation of propane to acrylic acid. Journal of Catalysis, 260(1), 30-36. doi:10.1016/j.jcat.2008.08.020SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019Nguyen, T. T., Burel, L., Nguyen, D. L., Pham-Huu, C., & Millet, J. M. M. (2012). Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane. Applied Catalysis A: General, 433-434, 41-48. doi:10.1016/j.apcata.2012.04.038Nguyen, T. T., Aouine, M., & Millet, J. M. M. (2012). Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene. Catalysis Communications, 21, 22-26. doi:10.1016/j.catcom.2012.01.026Valente, J. S., Armendáriz-Herrera, H., Quintana-Solórzano, R., del Ángel, P., Nava, N., Massó, A., & López Nieto, J. M. (2014). Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane. ACS Catalysis, 4(5), 1292-1301. doi:10.1021/cs500143jTHORSTEINSON, E. (1978). The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium. Journal of Catalysis, 52(1), 116-132. doi:10.1016/0021-9517(78)90128-8Ishikawa, S., Yi, X., Murayama, T., & Ueda, W. (2014). Heptagonal channel micropore of orthorhombic Mo3VOx as catalysis field for the selective oxidation of ethane. Applied Catalysis A: General, 474, 10-17. doi:10.1016/j.apcata.2013.07.050Ishikawa, S., Yi, X., Murayama, T., & Ueda, W. (2014). Catalysis field in orthorhombic Mo3VOx oxide catalyst for the selective oxidation of ethane, propane and acrolein. Catalysis Today, 238, 35-40. doi:10.1016/j.cattod.2013.12.054Grasselli, R. K., Burrington, J. D., Buttrey, D. J., DeSanto Jr., P., Lugmair, C. G., Volpe Jr., A. F., & Weingand, T. (2003). Topics in Catalysis, 23(1/4), 5-22. doi:10.1023/a:1024859917786Grasselli, R. K., Lugmair, C. G., Volpe Jr., A. F., Andersson, A., & Burrington, J. D. (2010). Enhancement of acrylic acid yields in propane and propylene oxidation by selective P Doping of MoV(Nb)TeO-based M1 and M2 catalysts. Catalysis Today, 157(1-4), 33-38. doi:10.1016/j.cattod.2010.01.044Grasselli, R. K., Lugmair, C. G., & Volpe, A. F. (2011). Towards an Understanding of the Reaction Pathways in Propane Ammoxidation Based on the Distribution of Elements at the Active Centers of the M1 Phase of the MoV(Nb,Ta)TeO System. Topics in Catalysis, 54(10-12), 595-604. doi:10.1007/s11244-011-9681-2Grasselli, R. K. (2014). Site isolation and phase cooperation: Two important concepts in selective oxidation catalysis: A retrospective. Catalysis Today, 238, 10-27. doi:10.1016/j.cattod.2014.05.036Ramli, I., Botella, P., Ivars, F., Pei Meng, W., Zawawi, S. M. M., Ahangar, H. A., … Nieto, J. M. L. (2011). Reflux method as a novel route for the synthesis of MoVTeNbOx catalysts for selective oxidation of propane to acrylic acid. Journal of Molecular Catalysis A: Chemical, 342-343, 50-57. doi:10.1016/j.molcata.2011.04.009Naraschewski, F. N., Praveen Kumar, C., Jentys, A., & Lercher, J. A. (2011). Phase formation and selective oxidation of propane over MoVTeNbOx catalysts with varying compositions. Applied Catalysis A: General, 391(1-2), 63-69. doi:10.1016/j.apcata.2010.07.005Blasco, T., Botella, P., Concepción, P., López Nieto, J. M., Martinez-Arias, A., & Prieto, C. (2004). Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts: catalyst characterization and catalytic performance. Journal of Catalysis, 228(2), 362-373. doi:10.1016/j.jcat.2004.08.036YANG, X., FENG, R., JI, W., & AU, C. (2008). Characterization and evaluation of MoVTeNb mixed metal oxide catalysts fabricated via hydrothermal process with ultrasonic pretreatment for propane partial oxidation. Journal of Catalysis, 253(1), 57-65. doi:10.1016/j.jcat.2007.10.020GAFFNEY, A., CHATURVEDI, S., CLARKJR, M., HAN, S., LE, D., RYKOV, S., & CHEN, J. (2005). Characterization and catalytic studies of PVD synthesized Mo/V/Nb/Te oxide catalysts. Journal of Catalysis, 229(1), 12-23. doi:10.1016/j.jcat.2004.09.013Espinal, L., Malinger, K. A., Espinal, A. E., Gaffney, A. M., & Suib, S. L. (2007). Preparation of Multicomponent Metal Oxides Using Nozzle Spray and Microwaves. Advanced Functional Materials, 17(14), 2572-2579. doi:10.1002/adfm.200600744Kolen’ko, Y. V., Amakawa, K., d’ Alnoncourt, R. N., Girgsdies, F., Weinberg, G., Schlögl, R., & Trunschke, A. (2012). Unusual Phase Evolution in MoVTeNb Oxide Catalysts Prepared by a Novel Acrylamide-Gelation Route. ChemCatChem, 4(4), 495-503. doi:10.1002/cctc.201100451Concepción, P., Hernández, S., & Nieto, J. M. L. (2011). On the nature of active sites in MoVTeO and MoVTeNbO catalysts: The influence of catalyst activation temperature. Applied Catalysis A: General, 391(1-2), 92-101. doi:10.1016/j.apcata.2010.05.011Botella, P., García-González, E., López Nieto, J. M., & González-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012Beato, P., Blume, A., Girgsdies, F., Jentoft, R. E., Schlögl, R., Timpe, O., … Mohd Salim, L. (2006). Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst. Applied Catalysis A: General, 307(1), 137-147. doi:10.1016/j.apcata.2006.03.014Celaya Sanfiz, A., Hansen, T. W., Girgsdies, F., Timpe, O., Rödel, E., Ressler, T., … Schlögl, R. (2008). Preparation of Phase-Pure M1 MoVTeNb Oxide Catalysts by Hydrothermal Synthesis—Influence of Reaction Parameters on Structure and Morphology. Topics in Catalysis, 50(1-4), 19-32. doi:10.1007/s11244-008-9106-zOzeki, T., Kihara, H., & Ikeda, S. (1988). Study of equilibria in 0.03 mM molybdate acidic aqueous solutions by factor analysis applied to ultraviolet spectra. Analytical Chemistry, 60(19), 2055-2059. doi:10.1021/ac00170a014Tytko, K.-H., & Schönfeld, B. (1975). Über Isopolymolybdatfeststoffe und deren Beziehung zu Isopolymolybdationen in wäßriger Lösung / Concerning Solid Isopolymolybdates and their Relation to Isopolymolybdate Ions in Aqueous Solution. Zeitschrift für Naturforschung B, 30(7-8), 471-484. doi:10.1515/znb-1975-7-801Müller, A., Krickemeyer, E., Bögge, H., Schmidtmann, M., & Peters, F. (1998). Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angewandte Chemie International Edition, 37(24), 3359-3363. doi:10.1002/(sici)1521-3773(19981231)37:243.0.co;2-jLivage, J. (2010). Hydrothermal Synthesis of Nanostructured Vanadium Oxides. Materials, 3(8), 4175-4195. doi:10.3390/ma3084175C. F. Baes Jr and R. E.Mesmer , in The Hydrolysis of Cations , Wiley N.Y. , 1970Tsuji, H., & Koyasu, Y. (2002). Synthesis of MoVNbTe(Sb)OxComposite Oxide Catalysts via Reduction of Polyoxometalates in an Aqueous Medium. Journal of the American Chemical Society, 124(20), 5608-5609. doi:10.1021/ja0122344Maksimovskaya, R. I., Bondareva, V. M., & Aleshina, G. I. (2008). NMR Spectroscopic Studies of Interactions in Solution during the Synthesis of MoVTeNb Oxide Catalysts. European Journal of Inorganic Chemistry, 2008(31), 4906-4914. doi:10.1002/ejic.200800500Griffith, W. P., & Lesniak, P. J. B. (1969). Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1066. doi:10.1039/j19690001066Butler, I. S., El-Sherbeny, H. A. M., Kenawy, I. M., & Mostafa, S. I. (2013). Synthesis and spectroscopic characterization of complexes of Cr(III), Cr(VI), Cu(III), Zn(II), Mo(VI), Pd(II), Ag(III), Au(III) and W(VI) with telluric acid. Journal of Molecular Structure, 1036, 510-520. doi:10.1016/j.molstruc.2012.11.017Müller, A., Kögerler, P., & Dress, A. W. M. (2001). Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems. Coordination Chemistry Reviews, 222(1), 193-218. doi:10.1016/s0010-8545(01)00391-5Botto, I. L., Cabello, C. I., & Thomas, H. J. (1997). (NH4)6[TeMo6O24]·7H2O Anderson phase as precursor of the TeMo5O16 catalytic phase: thermal and spectroscopic studies. Materials Chemistry and Physics, 47(1), 37-45. doi:10.1016/s0254-0584(97)80025-9Sun, Y., Liu, J., & Wang, E. (1986). Preparation and properties of some new 6-heteropoly-tellurate compounds of tungsten and molybdenum containing vanadium. Inorganica Chimica Acta, 117(1), 23-26. doi:10.1016/s0020-1693(00)88061-5Yoshida, H., Tanaka, T., Yoshida, T., Funabiki, T., & Yoshida, S. (1996). Control of the structure of niobium oxide species on silica by the equilibrium adsorption method. Catalysis Today, 28(1-2), 79-89. doi:10.1016/0920-5861(95)00232-4Kubouchi, Y., Hayakawa, S., Namatame, H., & Hirokawa, T. (2012). Direct observation of fractional change of niobium ionic species in a solution by means of X-ray absorption fine structure spectroscopy. X-Ray Spectrometry, 41(4), 259-263. doi:10.1002/xrs.2390Prasetyoko, D., Ramli, Z., Endud, S., & Nur, H. (2005). Preparation and characterization of bifunctional oxidative and acidic catalysts Nb2O5/TS-1 for synthesis of diols. Materials Chemistry and Physics, 93(2-3), 443-449. doi:10.1016/j.matchemphys.2005.03.030Konya, T., Katou, T., Murayama, T., Ishikawa, S., Sadakane, M., Buttrey, D., & Ueda, W. (2013). An orthorhombic Mo3VOxcatalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides. Catal. Sci. Technol., 3(2), 380-387. doi:10.1039/c2cy20444dOliver, J. (2004). The effect of pH on structural and catalytic properties of MoVTeNbO catalysts. Applied Catalysis A: General, 257(1), 67-76. doi:10.1016/s0926-860x(03)00632-

    The Mexican consensus on the diagnosis, treatment, and prevention of NSAID-induced gastropathy and enteropathy

    Get PDF
    Más de 30 millones de personas consumen diariamente antiinflamatorios noesteroideos (AINE) en el mundo, y este consumo se ve incrementado anualmente. Aunque losAINE poseen propiedades analgésicas y antiinflamatorias, sus eventos adversos gastrointesti-nales son bien reconocidos. En nuestro país no existía un consenso respecto al diagnóstico,tratamiento y prevención de la gastropatía y la enteropatía por AINE, por lo que la AsociaciónMexicana de Gastroenterología reunió a un grupo de expertos para establecer recomendacionesde utilidad para la comunidad médica. En este consenso se emitieron 33 recomendaciones. Elconsenso destaca que el riesgo de toxicidad gastrointestinal de los AINE varía según el fármacoempleado y su farmacocinética, lo cual debe ser considerado al momento de su prescripción. Losfactores de riesgo de complicación gastroduodenal por AINE son: antecedente de úlcera pép-tica, edad mayor a 65 a˜nos, dosis altas del AINE, infección por Helicobacter pylori (H.pylori), ypresencia de comorbilidades graves. Los síntomas y el da˜no gastroduodenal inducido por AINEson variables ya que puede cursar asintomático o manifestarse como anemia por deficiencia dehierro, hemorragia, estenosis y perforación. La cápsula endoscópica y la enteroscopia son méto-dos diagnósticos directos en la enteropatía por AINE. Respecto a la prevención, se recomiendaprescribir la dosis mínima necesaria de un AINE para obtener el efecto deseado y durante elmenor tiempo. Finalmente, los inhibidores de la bomba de protones (IBP) representan el están-dar de oro para la profilaxis y tratamiento de los efectos gastroduodenales, mas no son útilesen la enteropatía

    Consenso mexicano sobre diagnóstico, prevención y tratamiento de la gastropatía y enteropatía por antiinflamatorios no esteroideos

    Get PDF
    Más de 30 millones de personas consumen diariamente antiinflamatorios no este-roideos (AINE) en el mundo y este consumo se ve incrementado a˜no tras a˜no. Aunque los AINEposeen propiedades analgésicas y antiinflamatorias, sus eventos adversos gastrointestinales sonbien reconocidos. En nuestro país no existía un consenso respecto al diagnóstico, tratamientoy prevención de la gastropatía y la enteropatía por AINE, por lo que la Asociación Mexicana deGastroenterología reunió a un grupo de expertos para establecer recomendaciones de utilidadpara la comunidad médica. En este consenso se emitieron 33 recomendaciones. El consensodestaca que el riesgo de toxicidad gastrointestinal de los AINE varía según el fármaco empleadoy su farmacocinética, lo cual debe ser considerado al momento de su prescripción. Los factoresde riesgo de complicación gastroduodenal por AINE son: antecedente de úlcera péptica, edadmayor de 65 a˜nos, dosis altas del AINE, infección por Helicobacter pylori y presencia de comor-bilidades graves. Los síntomas y el da˜no gastroduodenal inducido por AINE son variables, ya quepuede cursar asintomático o manifestarse como anemia por deficiencia de hierro, hemorragia,estenosis y perforación. La cápsula endoscópica y la enteroscopia son métodos diagnósticosdirectos en la enteropatía por AINE. Respecto a la prevención, se recomienda prescribir la dosismínima necesaria de un AINE para obtener el efecto deseado y durante el menor tiempo. Porúltimo, los inhibidores de la bomba de protones representan el estándar de oro para la profilaxisy tratamiento de los efectos gastroduodenales, mas no son útiles en la enteropatí
    corecore