46 research outputs found

    Enzyme-Synthesized Highly Branched Maltodextrins Have Slow Glucose Generation at the Mucosal α-Glucosidase Level and Are Slowly Digestible In Vivo.

    Get PDF
    For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with ÎČ-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×108 Da, BE-WCS: 2.76×105 Da, and BEBA-WCS 1.62×105 Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release

    Unexpected High Digestion Rate of Cooked Starch by the Ct-Maltase-Glucoamylase Small Intestine Mucosal α-Glucosidase Subunit

    Get PDF
    For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies

    Mucosal Maltase-Glucoamylase Plays a Crucial Role in Starch Digestion and Prandial Glucose Homeostasis of Mice1–3

    No full text
    Starch is the major source of food glucose and its digestion requires small intestinal α-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in α-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal α-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of 13C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced α-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal α-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis

    Resumen: Enviromental strain of Vibrio cholera of San Luis Potosi, Mexico, do not contain functional ctxAB genes but express multiple antibiotic resistance traits

    No full text
    The main pathogenic factor of Vibrio cholerae O1 and O139 serotypes, causative agents of cholera, is the production of cholera toxin (CTX) encoded by the phage CTXphi. Other plasmids or integrons capable of horizontal transmission and encoding antimicrobial resistence are frequently found in O1/O139 and environmental non-O1/O139 strains. The last have are belived to constitute reservoirs for pathogenic determinants responsible of the cyclic cholera outbreaks. To identify probable reservoirs of transmissible pathogenic determinants, we analyzed the presence of ctxAB genes and the patterns of antibiotic resistance in environmental isolates of V. cholerae obtained in the state of San Luis Potosi, Mexico. Methods and results: The main sources of V. cholerae were local urban sewage waters (36.4%) and fresh waters together with derived edible products (34.4%). More than 40 different serotypes were identified, but none corresponded to the O1 or O139. Fourteen biochemical patterns were found clustered into four closely related groups. By PCR analysis two isolates obtained from marine products showed the presence of ctxAB amplification bands about 52 bp smaller than those obtained with O1 reference strains. No CTX production was detected in these two environmental strains suggesting the existence of a deletion involving the ctxA gene. A high frequence of resistance was observed against amoxicillin / clavulanic acid (73.7%), and erythromycin (30.9%); and intermediate frequence was observed against cefazolin (12.6%), cefapime (13.7%), tetracycline (8.3%) and trimethoprim / sulfamethoxazol (7.4%). Nine isolates displayed strong resistance against four to seven different antibiotics indicating the presence of chromosomal and extrachomosomal determints of antibiotic resistance. Conclusion: Enviromental V. cholerae in San Luis Potosi do not contain funtional ctxAB genes; however, transmissible elements containing antibiotic multiresistance determinants are relatively frequent

    Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity

    No full text
    Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose

    Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)

    Get PDF
    Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine
    corecore