11 research outputs found

    Optimizing street mobility through a netlogo simulation environment

    Get PDF
    The routes and streets make it possible to drive and travel through the cities, but unfortunately traffic and particularly congestion leads to drivers losing time while traveling from one place to another, because of the time it takes to transit on the roads, in addition to waiting times by traffic lights. This research introduces the extension of an agent-oriented system aimed at reducing driver waiting times at a street intersection. The simulation environment was implemented in NetLogo, which allowed comparison of the impact of Smart traffic light use versus a fixed-time traffic light

    Fiber Bragg grating-based high temperature sensor and its low cost interrogation system with enhanced resolution

    No full text
    A fiber Brag grating-based high temperature sensor together with a low cost, high speed and compact size interrogation system using a long period grating was designed, developed and tested. The designed sensor measures the temperature from room temperature to 550 °C. The sensor head was configured by encapsulating an fiber Brag grating (type-I) of Bragg resonance wavelength at 1552.88 nm in a capillary tube made of copper. Long period grating with peak transmission loss at 1550 nm was employed to convert the wavelength information from fiber Brag grating into an intensity modulated signal. Temperature related optical intensity information was again converted into its equivalent electrical signal by using a photodiode. The achieved resolution of the sensor was found to be 0.5 °C

    Using Artificial Intelligence to Stratify Normal versus Abnormal Chest X-rays: External Validation of a Deep Learning Algorithm at East Kent Hospitals University NHS Foundation Trust

    No full text
    Background: The chest radiograph (CXR) is the most frequently performed radiological examination worldwide. The increasing volume of CXRs performed in hospitals causes reporting backlogs and increased waiting times for patients, potentially compromising timely clinical intervention and patient safety. Implementing computer-aided detection (CAD) artificial intelligence (AI) algorithms capable of accurate and rapid CXR reporting could help address such limitations. A novel use for AI reporting is the classification of CXRs as ‘abnormal’ or ‘normal’. This classification could help optimize resource allocation and aid radiologists in managing their time efficiently. Methods: qXR is a CE-marked computer-aided detection (CAD) software trained on over 4.4 million CXRs. In this retrospective cross-sectional pre-deployment study, we evaluated the performance of qXR in stratifying normal and abnormal CXRs. We analyzed 1040 CXRs from various referral sources, including general practices (GP), Accident and Emergency (A&E) departments, and inpatient (IP) and outpatient (OP) settings at East Kent Hospitals University NHS Foundation Trust. The ground truth for the CXRs was established by assessing the agreement between two senior radiologists. Results: The CAD software had a sensitivity of 99.7% and a specificity of 67.4%. The sub-group analysis showed no statistically significant difference in performance across healthcare settings, age, gender, and X-ray manufacturer. Conclusions: The study showed that qXR can accurately stratify CXRs as normal versus abnormal, potentially reducing reporting backlogs and resulting in early patient intervention, which may result in better patient outcomes

    Deep learning in chest radiography: Detection of findings and presence of change.

    No full text
    BACKGROUND:Deep learning (DL) based solutions have been proposed for interpretation of several imaging modalities including radiography, CT, and MR. For chest radiographs, DL algorithms have found success in the evaluation of abnormalities such as lung nodules, pulmonary tuberculosis, cystic fibrosis, pneumoconiosis, and location of peripherally inserted central catheters. Chest radiography represents the most commonly performed radiological test for a multitude of non-emergent and emergent clinical indications. This study aims to assess accuracy of deep learning (DL) algorithm for detection of abnormalities on routine frontal chest radiographs (CXR), and assessment of stability or change in findings over serial radiographs. METHODS AND FINDINGS:We processed 874 de-identified frontal CXR from 724 adult patients (> 18 years) with DL (Qure AI). Scores and prediction statistics from DL were generated and recorded for the presence of pulmonary opacities, pleural effusions, hilar prominence, and enlarged cardiac silhouette. To establish a standard of reference (SOR), two thoracic radiologists assessed all CXR for these abnormalities. Four other radiologists (test radiologists), unaware of SOR and DL findings, independently assessed the presence of radiographic abnormalities. A total 724 radiographs were assessed for detection of findings. A subset of 150 radiographs with follow up examinations was used to asses change over time. Data were analyzed with receiver operating characteristics analyses and post-hoc power analysis. RESULTS:About 42% (305/ 724) CXR had no findings according to SOR; single and multiple abnormalities were seen in 23% (168/724) and 35% (251/724) of CXR. There was no statistical difference between DL and SOR for all abnormalities (p = 0.2-0.8). The area under the curve (AUC) for DL and test radiologists ranged between 0.837-0.929 and 0.693-0.923, respectively. DL had lowest AUC (0.758) for assessing changes in pulmonary opacities over follow up CXR. Presence of chest wall implanted devices negatively affected the accuracy of DL algorithm for evaluation of pulmonary and hilar abnormalities. CONCLUSIONS:DL algorithm can aid in interpretation of CXR findings and their stability over follow up CXR. However, in its present version, it is unlikely to replace radiologists due to its limited specificity for categorizing specific findings

    Frequency of Missed Findings on Chest Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings

    No full text
    Background: Missed findings in chest X-ray interpretation are common and can have serious consequences. Methods: Our study included 2407 chest radiographs (CXRs) acquired at three Indian and five US sites. To identify CXRs reported as normal, we used a proprietary radiology report search engine based on natural language processing (mPower, Nuance). Two thoracic radiologists reviewed all CXRs and recorded the presence and clinical significance of abnormal findings on a 5-point scale (1—not important; 5—critical importance). All CXRs were processed with the AI model (Qure.ai) and outputs were recorded for the presence of findings. Data were analyzed to obtain area under the ROC curve (AUC). Results: Of 410 CXRs (410/2407, 18.9%) with unreported/missed findings, 312 (312/410, 76.1%) findings were clinically important: pulmonary nodules (n = 157), consolidation (60), linear opacities (37), mediastinal widening (21), hilar enlargement (17), pleural effusions (11), rib fractures (6) and pneumothoraces (3). AI detected 69 missed findings (69/131, 53%) with an AUC of up to 0.935. The AI model was generalizable across different sites, geographic locations, patient genders and age groups. Conclusion: A substantial number of important CXR findings are missed; the AI model can help to identify and reduce the frequency of important missed findings in a generalizable manner
    corecore