84 research outputs found

    Reading and writing charge on graphene devices

    Full text link
    We use a combination of charge writing and scanning gate microscopy to map and modify the local charge neutrality point of graphene field-effect devices. We give a demonstration of the technique by writing remote charge in a thin dielectric layer over the graphene-metal interface and detecting the resulting shift in local charge neutrality point. We perform electrostatic simulations to characterize the gating effect of a realistic scanning probe tip on a graphene bilayer and find a good agreement with the experimental results

    Atomic force microscope nanolithography of graphene: cuts, pseudo-cuts and tip current measurements

    Full text link
    We investigate atomic force microscope nanolithography of single and bilayer graphene. In situ tip current measurements show that cutting of graphene is not current driven. Using a combination of transport measurements and scanning electron microscopy we show that, while indentations accompanied by tip current appear in the graphene lattice for a range of tip voltages, real cuts are characterized by a strong reduction of the tip current above a threshold voltage. The reliability and flexibility of the technique is demonstrated by the fabrication, measurement, modification and re-measurement of graphene nanodevices with resolution down to 15 nm

    Proximity induced superconductivity in indium gallium arsenide quantum wells

    Get PDF
    We report on the experimental observation of the proximity induced superconductivity in an indium gallium arsenide (In0.75Ga0.25As) quantum well. The Josephson junction was fabricated by several photo-lithographic processes on an InGaAs heterojunction and Niobium (Nb) was used as superconducting electrodes. Owing to the Andreev reflections and Andreev bound states at the Nb-In0.75Ga0.25As quantum well-Nb interfaces, the subharmonic energy gap structures (SGS) are observed at the differential conductance (dI/dV) versus voltage (V) plots when the applied source-drain bias voltages satisfy the expression VSD = 2Δ/ne. The dI/dV as a function of applied magnetic field B shows a maximum at zero B which decreases by increasing B. When decreasing B to below ±0.4 T, a hysteresis and shift of the conductance maxima close to B = 0 T are observed. Our results help to pave the way to the development of integrated coherent quantum circuitry.Authors acknowledge financial support from EPSRC grant numbers EP/M009505/1 and EP/J017671/1. K. Delfanazari is grateful to Dr. H. Asai for helpful discussions

    Evidence for formation of multi-quantum dots in hydrogenated graphene.

    Get PDF
    We report the experimental evidence for the formation of multi-quantum dots in a hydrogenated single-layer graphene flake. The existence of multi-quantum dots is supported by the low-temperature measurements on a field effect transistor structure device. The resulting Coulomb blockade diamonds shown in the color scale plot together with the number of Coulomb peaks exhibit the characteristics of the so-called 'stochastic Coulomb blockade'. A possible explanation for the formation of the multi-quantum dots, which is not observed in pristine graphene to date, was attributed to the impurities and defects unintentionally decorated on a single-layer graphene flake which was not treated with the thermal annealing process. Graphene multi-quantum dots developed around impurities and defect sites during the hydrogen plasma exposure process.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    On-Chip Andreev Devices: Hard Superconducting Gap and Quantum Transport in Ballistic Nb–In0.75Ga0.25AsQuantum-Well–Nb Josephson Junctions

    Get PDF
    A superconducting hard gap in hybrid superconductor–semiconductor devices has been found to be necessary to access topological superconductivity that hosts Majorana modes (non-Abelian excitation). This requires the formation of homogeneous and barrier-free interfaces between the superconductor and semiconductor. Here, a new platform is reported for topological superconductivity based on hybrid Nb–In0.75_{0.75}Ga0.25_{0.25}As-quantum-well–Nb that results in hard superconducting gap detection in symmetric, planar, and ballistic Josephson junctions. It is shown that with careful etching, sputtered Nb films can make high-quality and transparent contacts to the In0.75_{0.75}Ga0.25_{0.25}As quantum well, and the differential resistance and critical current measurements of these devices are discussed as a function of temperature and magnetic field. It is demonstrated that proximity-induced superconductivity in the In0.75_{0.75}Ga0.25_{0.25}As-quantum-well 2D electron gas results in the detection of a hard gap in four out of seven junctions on a chip with critical current values of up to 0.2 µA and transmission probabilities of >0.96. The results, together with the large g-factor and Rashba spin–orbit coupling in In0.75_{0.75}Ga0.25_{0.25}As quantum wells, which indeed can be tuned by the indium composition, suggest that the Nb–In0.75_{0.75}Ga0.25_{0.25}As–Nb system can be an excellent candidate to achieve topological phase and to realize hybrid topological superconducting devices.Authors acknowledge financial support from EPSRC grant numbers EP/M009505/1 and EP/J017671/1

    Experimental Realization of a Quantum Dot Energy Harvester.

    Get PDF
    We demonstrate experimentally an autonomous nanoscale energy harvester that utilizes the physics of resonant tunneling quantum dots. Gate-defined quantum dots on GaAs/AlGaAs high-electron-mobility transistors are placed on either side of a hot-electron reservoir. The discrete energy levels of the quantum dots are tuned to be aligned with low energy electrons on one side and high energy electrons on the other side of the hot reservoir. The quantum dots thus act as energy filters and allow for the conversion of heat from the cavity into electrical power. Our energy harvester, measured at an estimated base temperature of 75 mK in a He^{3}/He^{4} dilution refrigerator, can generate a thermal power of 0.13 fW for a temperature difference across each dot of about 67 mK.This work was funded by EPSRC(UK). G. J. acknowledges financial support from China Scholarship Council and GBCET. R. S. acknowledges financial support from the Spanish MINECO via Grant No. FIS2015-74472-JIN (AEI/FEDER/UE), the Ramón y Cajal program RYC-2016-20778 and through the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0377). Work by A. N. J. was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-SC0017890. B. S. acknowledges financial support from the Ministry of Innovation NRW via the “Programm zur Förderung der Rückkehr des hochqualifizierten Forschungsnachwuchses aus dem Ausland.” This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958

    Unraveling quantum Hall breakdown in bilayer graphene with scanning gate microscopy

    Full text link
    We use low-temperature scanning gate microscopy (SGM) to investigate the breakdown of the quantum Hall regime in an exfoliated bilayer graphene flake. SGM images captured during breakdown exhibit intricate patterns of "hotspots" where the conductance is strongly affected by the presence of the tip. Our results are well described by a model based on quantum percolation which relates the points of high responsivity to tip-induced scattering between localized Landau levels.Comment: 6 pages, 4 figure
    corecore