50 research outputs found

    Structural and magnetic dynamics of a laser induced phase transition in FeRh

    Full text link
    We use time-resolved x-ray diffraction and magnetic optical Kerr effect to study the laser induced antiferromagnetic to ferromagnetic phase transition in FeRh. The structural response is given by the nucleation of independent ferromagnetic domains (\tau_1 ~ 30ps). This is significantly faster than the magnetic response (\tau_2 ~ 60ps) given by the subsequent domain realignment. X-ray diffraction shows that the two phases co-exist on short time-scales and that the phase transition is limited by the speed of sound. A nucleation model describing both the structural and magnetic dynamics is presented.Comment: 5 pages, 3 figures - changed to reflect version accepted for PR

    Time- and momentum-resolved photoemission studies using time-of-ïŹ‚ight momentum microscopy at a free-electron laser

    No full text
    Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å−1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å−1, and a system response function of 150 fs

    Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates

    Get PDF
    Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (Tr ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise both thermal and applied field energy to change state and functionalise composites. A key requirement in realising multifunctional devices is the need to understand and control the properties of FeRh in the extreme thin film limit (tFeRh < 10 nm) where interfaces are crucial. Here we determine the properties of FeRh films in the thickness range 2.5–10 nm grown directly on MgO substrates. Our magnetometry and structural measurements show that a perpendicular strain field exists in these thin films which results in an increase in the phase transition temperature as thickness is reduced. Modelling using a spin dynamics approach supports the experimental observations demonstrating the critical role of the atomic layers close to the MgO interface

    Thiothymidine combined with UVA as a potential novel therapy for bladder cancer

    Get PDF
    BACKGROUND: Thiothymidine (S4TdR) can be incorporated into DNA and sensitise cells to DNA damage and cell death following exposure to UVA light. Studies were performed to determine if the combination of S4TdR and UVA could be an effective treatmentfor bladder cancer. METHODS: Uptake and incorporation of S4TdR was determined in rat and human bladder tumour cell lines. Measures of DNA crosslinking and apoptosis were also performed. In vivo activity of the combination of S4TdR and UVA was investigated in an orthotopic model of bladder cancer in rats. RESULTS: Thiothymidine (200 uM) replaced up to 0.63% of thymidine in rat and tumour bladder cancer cells. The combination of S4TdR (10–200 uM) and UVA (1–5 kJm-2) caused apoptosis and cell death at doses that were not toxic alone. Addition of raltitrexed (Astra Zeneca, Alderley Edge, Cheshire, UK) increased the incorporation of S4TdR into DNA (up to 20-fold at IC5) and further sensitised cells to UVA. Cytotoxic effect was associated with crosslinking of DNA, at least partially to protein. Intravenous administration of S4TdR, in combination with UVA delivered directly to the bladder, resulted in an antitumour effect in three of five animals treated. CONCLUSION: These data indicate that the combination of S4TdR and UVA has potential as a treatment for bladder cancer, and give some insight into the mechanism of action. Further work is necessary to optimise the delivery of the two components

    Quantitative TEM imaging of the magnetostructural and phase transitions in FeRh thin film systems

    Get PDF
    Equi-atomic FeRh is a very interesting material as it undergoes a magnetostructural transition from an antiferromagnetic (AF) to a ferromagnetic (FM) phase between 75-105 °C. Its ability to present phase co-existence separated by domain walls (DWs) above room temperature provides immense potential for exploitation of their DW motion in spintronic devices. To be able to effectively control the DWs associated with AF/FM coexistence in FeRh thin films we must fully understand the magnetostructural transition and thermomagnetic behaviour of DWs at a localised scale. Here we present a transmission electron microscopy investigation of the transition in planar FeRh thin-film samples by combining differential phase contrast (DPC) magnetic imaging with in situ heating. We perform quantitative measurements from individual DWs as a function of temperature, showing that FeRh on NiAl exhibits thermomagnetic behaviour consistent with the transition from AF to FM. DPC imaging of an FeRh sample with HF-etched substrate reveals a state of AF/FM co-existence and shows the transition from AF to FM regions proceeds via nucleation of small vortex structures, which then grow by combining with newly nucleated vortex states into larger complex magnetic domains, until it is in a fully-FM state

    La résonance lectorale

    Get PDF
    À quoi tient qu'une Ɠuvre littĂ©raire nous Ă©meut, nous touche, nous donne Ă  penser ? L’incursion dans l’imaginaire de l’autre, dans ses fantasmes, la reconnaissance des Ă©lĂ©ments de l’histoire (la grande et la petite) convoquĂ©s dans le roman, la piĂšce de thĂ©Ăątre ou le poĂšme viennent Ă©largir notre expĂ©rience. Toute crĂ©ation est sans doute dĂ©passement d’un donnĂ© arriĂšre-textuel par la confrontation avec la langue, ses contraintes et ses potentialitĂ©s. Mais que se passe-t-il si l’on replace l’acte crĂ©atif dans la relation littĂ©raire comme co-crĂ©ation ? C’est ce phĂ©nomĂšne d’écho qu’explore, sous le nom de rĂ©sonance, le prĂ©sent volume, dixiĂšme de la collection Approches Interdisciplinaires de la Lecture, entre harmonie et dissonance, dans la confrontation des espaces socioculturels liĂ©s Ă  la production du texte et Ă  ses lectures successives, dans la recherche, par-delĂ  les problĂšmes de longueur d’onde, d’un noyau de vĂ©ritĂ© Ă  exhumer ou Ă  faire advenir

    The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits

    Get PDF
    Carbonate-bearing fluorapatite rocks occur at over 30 globally distributed carbonatite complexes and represent a substantial potential supply of phosphorus for the fertiliser industry. However, the process(es) involved in forming carbonate-bearing fluorapatite at some carbonatites remain equivocal, with both hydrothermal and weathering mechanisms inferred. In this contribution, we compare the paragenesis and trace element contents of carbonate-bearing fluorapatite rocks from the Kovdor, Sokli, Bukusu, CatalĂŁo I and Glenover carbonatites in order to further understand their origin, as well as to comment upon the concentration of elements that may be deleterious to fertiliser production. The paragenesis of apatite from each deposit is broadly equivalent, comprising residual magmatic grains overgrown by several different stages of carbonate-bearing fluorapatite. The first forms epitactic overgrowths on residual magmatic grains, followed by the formation of massive apatite which, in turn, is cross-cut by late euhedral and colloform apatite generations. Compositionally, the paragenetic sequence corresponds to a substantial decrease in the concentration of rare earth elements (REE), Sr, Na and Th, with an increase in U and Cd. The carbonate-bearing fluorapatite exhibits a negative Ce anomaly, attributed to oxic conditions in a surficial environment and, in combination with the textural and compositional commonality, supports a weathering origin for these rocks. Carbonate-bearing fluorapatite has Th contents which are several orders of magnitude lower than magmatic apatite grains, potentially making such apatite a more environmentally attractive feedstock for the fertiliser industry. Uranium and cadmium contents are higher in carbonate-bearing fluorapatite than magmatic carbonatite apatite, but are much lower than most marine phosphorites
    corecore