52 research outputs found

    The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate.

    Get PDF
    Exposure to heat has a range of potential negative impacts on human health; hot weather may exacerbate cardiovascular and respiratory illness or lead to heat stroke and death. Urban populations are at increased risk due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI and its effects, whereas far less research focuses on the wintertime UHI. Exposure to low temperature also leads to a range of illnesses, and in fact, in the UK, annual cold-related mortality outweighs heat-related mortality. It is not clearly understood to what extent the wintertime UHI may protect against cold related mortality. In this study we quantify the UHI intensity in wintertime for a heavily urbanized UK region (West Midlands, including Birmingham) using a regional weather model, and for the first time, use a health impact assessment (HIA) to estimate the associated impact on cold-related mortality. We show that the population-weighted mean winter UHI intensity was +2.3 °C in Birmingham city center, and comparable with that of summer. Our results suggest a potential protective effect of the wintertime UHI, equivalent to 266 cold-related deaths avoided (~15% of total cold-related mortality over ~11 weeks). When including the impacts of climate change, our results suggest that the number of heat-related deaths associated with the summer UHI will increase from 96 (in 2006) to 221 in the 2080s, based on the RCP8.5 emissions pathway. The protective effect of the wintertime UHI is projected to increase only slightly from 266 cold-related deaths avoided in 2009 to 280 avoided in the 2080s. The different effects of the UHI in winter and summer should be considered when assessing interventions in the built environment for reducing summer urban heat, and our results suggest that the future burden of temperature-related mortality associated with the UHI is likely to increase in summer relative to winter

    Comparing temperature-related mortality impacts of cool roofs in winter and summer in a highly urbanized European region for present and future climate

    Get PDF
    Human health can be negatively impacted by hot or cold weather, which often exacerbates respiratory or cardiovascular conditions and increases the risk of mortality. Urban populations are at particular increased risk of effects from heat due to the Urban Heat Island (UHI) effect (higher urban temperatures compared with rural ones). This has led to extensive investigation of the summertime UHI, its impacts on health, and also the consideration of interventions such as reflective 'cool' roofs to help reduce summertime overheating effects. However, interventions aimed at limiting summer heat are rarely evaluated for their effects in wintertime, and thus their overall annual net impact on temperature-related health effects are poorly understood. In this study we use a regional weather model to simulate the winter 2009/10 period for an urbanized region of the UK (Birmingham and the West Midlands), and use a health impact assessment to estimate the impact of reflective 'cool' roofs (an intervention usually aimed at reducing the UHI in summer) on cold-related mortality in winter. Cool roofs have been shown to be effective at reducing maximum temperatures during summertime. In contrast to the summer, we find that cool roofs have a minimal effect on ambient air temperatures in winter. Although the UHI in summertime can increase heat-related mortality, the wintertime UHI can have benefits to health, through avoided cold-related mortality. Our results highlight the potential annual net health benefits of implementing cool roofs to reduce temperature-related mortality in summer, without reducing the protective UHI effect in winter. Further, we suggest that benefits of cool roofs may increase in future, with a doubling of the number of heat-related deaths avoided by the 2080s (RCP8.5) compared to summer 2006, and with insignificant changes in the impact of cool-roofs on cold-related mortality. These results further support reflective 'cool' roof implementation strategies as effective interventions to protect health, both today and in future

    Linking weather data, satellite imagery and field observations to household food production and child undernutrition: an exploratory study in Burkina Faso

    Get PDF
    Worldwide, 50 million children under five are acutely malnourished, while 16 million amongst them suffer from severe wasting. Chronic malnutrition is more common and accounts for an estimated 159 million children, meaning that approximately 23.8% of all children under five worldwide are stunted. The proportion of stunted children has decreased worldwide between 1990 (39.6%) and 2014 (23.8%), but the progress has been unequal. While Asia as a whole reduced stunting by half (-47.0%) between 1990 and 2014, there are still 78 million stunted children in South Asia alone. Unlike Asia, the African continent has reduced stunting by just one quarter (24.0%). In contrast, the absolute number of stunted children in Africa has still increased, from 47 million in 1990, to 58 million in 2014. Under-nutrition is caused by a complex web of interdependent environmental/climatic, agricultural and socio-economic factors. Climate change has recently been identified as a major risk factor for childhood undernutrition. However, the scientific evidence base for this is weak. No study has so far simultaneously combined of the well-known drivers of undernutrition with climate change while being grounded in one population in one-time and in one location. Such studies are prerequisite for the relative attribution of the various risk factors, including climate chance, as causes of childhood undernutrition. In this exploratory study, methods from multiple sectors were applied to 20 randomly selected households in Bourasso in rural Burkina Faso, where more than 80% of the population are subsistence farmers, i.e. live off their fields. Well tested methods, such as household-level agricultural and nutritional surveys, anthropometric measurement of undernutrition with innovative methods, measuring household level-crop yields, were combined. This was done by participatory mapping of each household’s plots. Remote sensing algorithms were applied to RapidEye satellite scenes covering the study area in order to map the actual cultivated area and to derive qualitative harvest estimates for the surveyed micro-fields. Weather data were obtained from a research meteorological field station, about 20 km away from Bourasso. In addition to bringing field methods from different sectors together through the lens of a household, one further advanced method was integrated: The linkage between each household plot limits and their integration into the satellite scene making it possible to estimate crop yields at the plot level for each household and linking this to the nutritional status of that specific household. Thus the exploratory study produced the following results: High-resolution remote sensing data can assist studies on malnutrition in Burkina Faso; RapidEye is a promising data source in regard to the spatial resolution for micro-field assessments; The strong inter-annual variation of malnutrition is suggestive that climate is a casual factor in the absence of other explanatory factors (political unrest, price shocks of inputs, epidemics). Population-based studies replicating the described multi-sectoral toolbox should be upscaled to larger sample sizes and longer observational time series. This could contribute to generating crucial climate health impact functions, in this case for malnutrition

    NUTRItion and CLIMate (NUTRICLIM): investigating the relationship between climate variables and childhood malnutrition through agriculture, an exploratory study in Burkina Faso

    Get PDF
    Malnutrition remains a leading cause of death in children in low- and middle-income countries; this will be aggravated by climate change. Annually, 6.9 million deaths of children under 5 were attributable directly or indirectly to malnutrition. Although these figures have recently decreased, evidence shows that a world with a medium climate (local warming up to 3–4 °C) will create an additional 25.2 million malnourished children. This proof of concept study explores the relationships between childhood malnutrition (more specifically stunting), regional agricultural yields, and climate variable through the use of remote sensing (RS) satellite imaging along with algorithms to predict the effect of climate variability on agricultural yields and on malnutrition of children under 5. The success of this proof of purpose study, NUTRItion and CLIMate (NUTRICLIM), should encourage researchers to apply both concept and tools to study of the link between weather variability, crop yield, and malnutrition on a larger scale. It would also allow for linking such micro-level data to climate models and address the challenge of projecting the additional impact of childhood malnutrition from climate change to various policy relevant time horizons

    Coronavirus seasonality, respiratory infections and weather.

    Get PDF
    BACKGROUND: The survival of coronaviruses are influenced by weather conditions and seasonal coronaviruses are more common in winter months. We examine the seasonality of respiratory infections in England and Wales and the associations between weather parameters and seasonal coronavirus cases. METHODS: Respiratory virus disease data for England and Wales between 1989 and 2019 was extracted from the Second-Generation Surveillance System (SGSS) database used for routine surveillance. Seasonal coronaviruses from 2012 to 2019 were compared to daily average weather parameters for the period before the patient's specimen date with a range of lag periods. RESULTS: The seasonal distribution of 985,524 viral infections in England and Wales (1989-2019) showed coronavirus infections had a similar seasonal distribution to influenza A and bocavirus, with a winter peak between weeks 2 to 8. Ninety percent of infections occurred where the daily mean ambient temperatures were below 10 °C; where daily average global radiation exceeded 500 kJ/m2/h; where sunshine was less than 5 h per day; or where relative humidity was above 80%. Coronavirus infections were significantly more common where daily average global radiation was under 300 kJ/m2/h (OR 4.3; CI 3.9-4.6; p < 0.001); where average relative humidity was over 84% (OR 1.9; CI 3.9-4.6; p < 0.001); where average air temperature was below 10 °C (OR 6.7; CI 6.1-7.3; p < 0.001) or where sunshine was below 4 h (OR 2.4; CI 2.2-2.6; p < 0.001) when compared to the distribution of weather values for the same time period. Seasonal coronavirus infections in children under 3 years old were more frequent at the start of an annual epidemic than at the end, suggesting that the size of the susceptible child population may be important in the annual cycle. CONCLUSIONS: The dynamics of seasonal coronaviruses reflect immunological, weather, social and travel drivers of infection. Evidence from studies on different coronaviruses suggest that low temperature and low radiation/sunlight favour survival. This implies a seasonal increase in SARS-CoV-2 may occur in the UK and countries with a similar climate as a result of an increase in the R0 associated with reduced temperatures and solar radiation. Increased measures to reduce transmission will need to be introduced in winter months for COVID-19

    Involving private healthcare practitioners in an urban NCD sentinel surveillance system: lessons learned from Pune, India

    Get PDF
    Background: Despite the rising impact of non-communicable diseases (NCDs) on public health in India, lack of quality data and routine surveillance hampers the planning process for NCD prevention and control. Current surveillance programs focus largely on communicable diseases and do not adequately include the private healthcare sector as a major source of care in cities. Objective: The objective of the study was to conceptualize, implement, and evaluate a prototype for an urban NCD sentinel surveillance system among private healthcare practitioners providing primary care in Pune, India. Design: We mapped all private healthcare providers in three selected areas of the city, conducted a knowledge, attitude, and practice survey with regard to surveillance among 258 consenting practitioners, and assessed their willingness to participate in a routine NCD surveillance system. In total, 127 practitioners agreed and were included in a 6-month surveillance study. Data on first time diagnoses of 10 selected NCDs alongside basic demographic and socioeconomic patient information were collected onsite on a monthly basis using a paper-based register. Descriptive and regression analyses were performed. Results: In total, 1,532 incident cases were recorded that mainly included hypertension (n622, 41%) and diabetes (n460, 30%). Dropout rate was 10% (n13). The monthly reporting consistency was quite constant, with the majority (n63, 50%) submitting 110 cases in 6 months. Average number of submitted cases was highest among allopathic practitioners (17.4). A majority of the participants (n104, 91%) agreed that the surveillance design could be scaled up to cover the entire city. Conclusions: The study indicates that private primary healthcare providers (allopathic and alternate medicine practitioners) play an important role in the diagnosis and treatment of NCDs and can be involved in NCD surveillance, if certain barriers are addressed. Main barriers observed were lack of regulation of the private sector, cross-practices among different systems of medicine, limited clinic infrastructure, and knowledge gaps about disease surveillance. We suggest a voluntary augmented sentinel NCD surveillance system including public and private healthcare facilities at all levels of care

    Prepared to react? Assessing the functional capacity of the primary health care system in rural Orissa, India to respond to the devastating flood of September 2008

    Get PDF
    Background: Early detection of an impending flood and the availability of countermeasures to deal with it can significantly reduce its health impacts. In developing countries like India, public primary health care facilities are frontline organizations that deal with disasters particularly in rural settings. For developing robust counter reacting systems evaluating preparedness capacities within existing systems becomes necessary. Objective: The objective of the study is to assess the functional capacity of the primary health care system in Jagatsinghpur district of rural Orissa in India to respond to the devastating flood of September 2008. Methods: An onsite survey was conducted in all 29 primary and secondary facilities in five rural blocks (administrative units) of Jagatsinghpur district in Orissa state. A pre-tested structured questionnaire was administered face to face in the facilities. The data was entered, processed and analyzed using STATA&#x00AE; 10. Results: Data from our primary survey clearly shows that the healthcare facilities are ill prepared to handle the flood despite being faced by them annually. Basic utilities like electricity backup and essential medical supplies are lacking during floods. Lack of human resources along with missing standard operating procedures; pre-identified communication and incident command systems; effective leadership; and weak financial structures are the main hindering factors in mounting an adequate response to the floods. Conclusion: The 2008 flood challenged the primary curative and preventive health care services in Jagatsinghpur. Simple steps like developing facility specific preparedness plans which detail out standard operating procedures during floods and identify clear lines of command will go a long way in strengthening the response to future floods. Performance critiques provided by the grass roots workers, like this one, should be used for institutional learning and effective preparedness planning. Additionally each facility should maintain contingency funds for emergency response along with local vendor agreements to ensure stock supplies during floods. The facilities should ensure that baseline public health standards for health care delivery identified by the Government are met in non-flood periods in order to improve the response during floods. Building strong public primary health care systems is a development challenge. The recovery phases of disasters should be seen as an opportunity to expand and improve services and facilities

    A qualitative study of community perception and acceptance of biological larviciding for malaria mosquito control in rural Burkina Faso

    Get PDF
    Background: Vector and malaria parasite’s rising resistance against pyrethroid-impregnated bed nets and antimalarial drugs highlight the need for additional control measures. Larviciding against malaria vectors is experiencing a renaissance with the availability of environmentally friendly and target species-specific larvicides. In this study,we analyse the perception and acceptability of spraying surface water collections with the biological larvicide Bacillus thuringiensis israelensis in a single health district in Burkina Faso. Methods: A total of 12focus group discussions and 12key informant interviews were performed in 10 rural villages provided with coverage of various larvicide treatments (all breeding sites treated, the most productive breeding sites treated, and untreated control). Results: Respondents’ knowledge about the major risk factors for malaria transmission was generally good. Most interviewees stated they performed personal protective measures against vector mosquitoes including the use of bed nets and sometimes mosquito coils and traditional repellents. The acceptance of larviciding in and around the villages was high and the majority of respondents reported a relief in mosquito nuisance and malarial episodes. There was high interest in the project and demand for future continuation. Conclusion: This study showed that larviciding interventions received positive resonance from the population. People showed a willingness to be involved and financially support the program. The positive environment with high acceptance for larviciding programs would facilitate routine implementation. An essential factor for the future success of such programs would be inclusion in regional or national malaria control guidelines

    Challenges to the surveillance of non-communicable diseases – a review of selected approaches

    Get PDF
    Background: The rising global burden of non-communicable diseases (NCDs) necessitates the institutionalization of surveillance systems to track trends and evaluate interventions. However, NCD surveillance capacities vary across high- and low- and middle-income countries. The objective of the review was to analyse existing literature with respect to structures of health facility-based NCD surveillance systems and the lessons low- and middle-income countries can learn in setting up and running these systems. Methods: A literature review was conducted using Pub Med, Web of Knowledge and WHOLIS databases to identify citations published in English language between 1993 and 2013. In total, 20 manuscripts met inclusion criteria: 12 studies were analysed in respect to the surveillance approach, eight supporting documents in respect to general and regional challenges in NCD surveillance. Results: Eleven of the 12 studies identified were conducted in high-income countries. Five studies had a single disease focus, three a multiple NCD focus and three covered communicable as well as non-communicable diseases. Nine studies were passive assisted sentinel surveillance systems, of which six focused on the primary care level and three had additional active surveillance components, i.e., population-based surveys. The supporting documents reveal that NCD surveillance is rather limited in most low- and middle-income countries despite the increasing disease burden and its socioeconomic impact. Major barriers include institutional surveillance capacities and hence data availability. Conclusions: The review suggests that given the complex system requirements, multiple surveillance approaches are necessary to collect comprehensive information for effective NCD surveillance. Sentinel augmented facility-based surveillance, preferably supported by population-based surveys, can provide improved evidence and help budget scarce resources. Electronic supplementary material: The online version of this article (doi:10.1186/s12889-015-2570-z) contains supplementary material, which is available to authorized users

    Between a rock and a hard place: early experience of migration challenges under the Covid-19 pandemic

    Get PDF
    This working paper was produced under the European Union Horizon 2020 funded AGRUMIG project and traces the impact of Covid-19 on migration trends in seven project countries – China, Ethiopia, Kyrgyzstan, Moldova, Morocco, Nepal and Thailand. The context of global migration has changed dramatically due to the coronavirus pandemic. Both within and between countries there has been a substantial curtailment of movement. As a result of multiple lockdowns, economic activity has severely declined and labor markets have ground to a halt, with mass unemployment in industrialized economies looming on the horizon. For both migrant hosting and origin countries – some are substantially both – this poses a set of complex development challenges. Partners of the AGRUMIG project undertook a rapid review of impacts across project countries, exploring the impacts on rural households but also identifying the persistent desire to migrate in spite of restrictions
    corecore