364 research outputs found

    Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions

    Get PDF
    Signal processing is an important tool for diagnostics of mechanical systems. Many different techniques are available to process experimental signals, among others: FFT, wavelet transform, cepstrum, demodulation analysis, second order ciclostationarity analysis, etc. However, often hypothesis about data and computational efforts restrict the application of some techniques. In order to overcome these limitations, the empirical mode decomposition has been proposed. The outputs of this adaptive approach are the intrinsic mode functions that are treated with the Hilbert transform in order to obtain the Hilbert–Huang spectrum. Anyhow, the selection of the intrinsic mode functions used for the calculation of Hilbert–Huang spectrum is normally done on the basis of user’s experience. On the contrary, in the paper a merit index is introduced that allows the automatic selection of the intrinsic mode functions that should be used. The effectiveness of the improvement is proven by the result of the experimental tests presented and performed on a test-rig equipped with a spiral bevel gearbox, whose high contact ratio made difficult to diagnose also serious damages of the gears. This kind of gearbox is normally never employed for benchmarking diagnostics techniques. By using the merit index, the defective gearbox is always univocally identified, also considering transient operating conditions

    Discussion of the dynamic stability of a multi-degree-of-freedom rotor system affected by a transverse crack

    Get PDF
    The dynamic behaviour of cracked rotors is one of the most discussed topics in the rotordynamic literature due to the wide range of problems that may arise from this fault. Among them, it is a common notion that cracks in horizontal rotating shafts may cause instability of the system because of the periodic opening and closing of the crack, i.e., the breathing mechanism, determines the stiffness variation and the parametric excitation of the rotor system. Simplified models have been used to study this phenomenon using Jeffcott rotors. For the first time in this paper, a model of a real hyperstatic rotor with several degrees of freedom is used, which also considers the bearings and the foundation of the system, and the stability is discussed by means of the Floquet theory. The sensitivity of the obtained results to the system anisotropy and the crack position is also investigated. The results presented are quite different from those obtained by means of the simple Jeffcott rotor but are consistent with real and documented field experiences

    Rotor balancing using high breakdown-point and bounded-influence estimators

    Get PDF
    In industrial field, one of the most important practical problems of rotating machinery concerns rotor balancing. Many different methods are used for rotor balancing. Traditional influence coefficient method is often employed along with weighted least squares in order to reduce vibration amplitude, typically at selected rotating speeds like critical or operating ones. Usually the selection of the weights of the least-squares algorithm is manually made by a skilled operator that can decide in which speed range the vibration reduction is more effective. Several methods have been proposed in order to avoid operator's arbitrariness and an automatic procedure based on robust regression is introduced in this paper. In particular, the analysis is focused on high breakdown-point and bounded-influence estimators. Theoretical aspects and properties of these methods are investigated. The effectiveness and robustness of the proposed balancing procedure are shown by means of an experimental case using a test-rig

    On model updating of turbo-generator set

    Get PDF
    Models can be applied for simulating dynamical behavior of rotating machinery or specific faulty conditions. Efficient model updating techniques could be very useful for increasing model accuracy. Model updating of rotor systems is significantly different with respect to the well-known model updating techniques and related modal analyses performed in the field of vibrating structures. This paper investigates both the difficulties and the conditions of rotor vibrations measurement tests as well as the approximations introduced in the rotor model. Some experimental cases of turbo-generator machines indicate the difficulties and problems in the identification of eigen-frequencies and damping modal parameter. In the second part of the paper uncertainties and non-linearity of the model are investigated. An example of updating of some shaft and bearing parameters by means of an evolutionary algorithm, for fitting the natural frequencies of a shaft line, is presented and discussed. Model updating techniques of bearing coefficients are also discussed and a procedure is proposed to avoid misleading results of widely-used model updating approaches

    Glutathione infusion before primary percutaneous coronary intervention: A randomised controlled pilot study

    Get PDF
    Objective: In the setting of reperfused ST-elevation myocardial infarction (STEMI), increased production of reactive oxygen species (ROS) contributes to reperfusion injury. Among ROS, hydrogen peroxide (H2O2) showed toxic effects on human cardiomyocytes and may induce microcirculatory impairment. Glutathione (GSH) is a water-soluble tripeptide with a potent oxidant scavenging activity. We hypothesised that the infusion of GSH before acute reoxygenation might counteract the deleterious effects of increased H2O2 generation on myocardium. Methods: Fifty consecutive patients with STEMI, scheduled to undergo primary angioplasty, were randomly assigned, before intervention, to receive an infusion of GSH (2500 mg/25 mL over 10 min), followed by drug administration at the same doses at 24, 48 and 72 hours elapsing time or placebo. Peripheral blood samples were obtained before and at the end of the procedure, as well as after 5 days. H2O2 production, 8-iso-prostaglandin F2α (PGF2α) formation, H2O2 breakdown activity (HBA) and nitric oxide (NO) bioavailability were determined. Serum cardiactroponin T (cTpT) was measured at admission and up to 5 days. Results: Following acute reperfusion, a significant reduction of H2O2 production (p=0.0015) and 8-iso-PGF2α levels (p=0.0003), as well as a significant increase in HBA (p<0.0001)and NO bioavailability (p=0.035), was found in the GSH group as compared with placebo. In treated patients, attenuated production of H2O2 persisted up to 5 days from the index procedure (p=0.009) and these changes was linked to those of the cTpT levels (r=0.41, p=0.023). Conclusion: The prophylactic and prolonged infusion of GSH seems to determine a rapid onset and persistent blunting of H2O2 generation improving myocardial cell survival. Nevertheless, a larger trial, adequately powered for evaluation of clinical endpoints, is ongoing to confirm the current finding

    Noble metal nanoparticles networks stabilized by rod-like organometallic bifunctional thiols

    Get PDF
    Rod-like organometallic dithiol containing square-planar Pt(II) centers, i. e., trans,trans-[(H3COCS)Pt(PBu3)(2)(C equivalent to C-C6H4-C6H4-C equivalent to C)(PBu3)(2)Pt(SCOCH3)] was used as bifunctional stabilizing agent for the synthesis of Pd-, Au-, and AgNPs (MNPs). All the MNPs showed diameters of about 4 nm, which can be controlled by carefully modulating the synthesis parameters. Covalent MNPs stabilization occurred through a single S bridge between Pt(II) and the noble metal nanocluster surfaces, leading to a network of regularly spaced NPs with the formation of dyads, as supported by SR-XPS data and by TEM imaging analysis. The chemical nature of NPs systems was also confirmed by EDS and NMR. Comparison between SR-XPS data of MNPs and self-assembled monolayers and multilayers of pristine rod-like dithiols deposited onto polycrystalline gold surfaces revealed an electronic interaction between Pt(II) centers and biphenyl moieties of adjacent ligands, stabilizing the organic structure of the network. The possibility to obtain networks of regularly spaced MNPs opens outstanding perspectives in optoelectronics

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc

    Convertible Bonds and Bank Risk-Taking

    Full text link
    We study how contingent capital that converts in equity ahead of default affects bankrisk-shifting. Going concern conversion restores equity value in highly levered states,thus reducing heightened risk incentives. In contrast, conversion at default for traditionalbail-inable debt has no effect on endogenous risk. The main beneficial effect comes from reduced leverage at conversion. In contrast to traditional convertible debt, equity dilution under going concern conversion has the opposite effect. The negative effect of dilution is tempered by any value transfer at conversion. We find that CoCo capital may be less risky than bail-inable debt when lower priority is compensated by lower endogenous risk, which is beneficial as a lower bond yield improves incentives. The risk reduction effect of CoCo debt depends critically on the informativeness of the trigger, but is always inferior to pure equity
    • …
    corecore